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I I. INTRODUCTION

A Free Electron Laser (FEL) device generates stimulated radiation by

the interaction of a relativistic electron beam and an external electro-

magnetic wave or pump. The intensity of the emission increases with the

pump amplitude and it is advantageous to use an external ripple magnetic

field ("wiggler") as the external pump. The FEL with a wiggler of constant

pitch and amplitude (CWFEL) has a large small signal (ss) gain, but a low

I high signal (hs) gain and efficiency (n < 0.1%) for optical wavelengths.
2 ,3 '4

By adiabatically tapering the wiggler field amplitude and/or wavelength

1(tapered wiggler FEL, TWFEL), the predicted hs gain and efficiency can be

dramatically enhanced. 2 ,5 A considerable amount of theoretical work has

I been carried out to describe the TWFEL characteristics. However, until

recently most of the studies utilized simplified models that assumed one

dimensional, infinite length electron beams, single mode excitation, single

pass and amplifier (hs) operation. Although these simplifications are

quite useful to understand the TWFEL mechanisms, they limit the range of

1applicablity of the theories, mainly to predict the characteristics of

practical FEL devices. In addition, the validity of most of the assumptions

have to be reevaluated to study FEL oscillators.

It was the purpose of the FEL theoretical study reported here to

investigate the influence of relaxing some of these simplifying assumptions

on the TWFEL characteristics. In particular, the investigations were

focussed on the following problems: 1) transverse effects; wiggler field

inhomogeneity, electron and photon beam radial profiles; 2) small signal

behavior as a function of taper; 3) small signal gain enhancement for

TWFEL; reduction of the number of photon passes to design a practical
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oscillator; 4) finite electron beam pulse effects and parasitic instability

growth and saturation. The results of these investigations are described in

detail in Sections II through V, respectively, of this report. Each sec-

tion is self-contained, describing the problem, the objective of the

research, the approach taken and the results obtained in detail. Section V

was performed by UCLA under subcontract to TRW. In what follows, we

briefly summarize the contents of each section.

In Section II, the transverse effects are described. For an optical

FEL, the electron beam is of the order of a few millimeters in the trans-

verse direction. The electron beam radius is chosen so that the beam is

in equilibrium with the high amplitude wiggler field. This dimension is

quite different than that of a propagating electromagnetic wave. Due to

the betratron oscillations caused by the wiggler field, the electrons

sample different amplitudes of wiggler and radiation field. Since the

TWFEL efficiency and gain strongly depend on the amplitude of the wiggler

field and the power density of the radiation, these effects can play an

important role in the final gain value, its spectrum and its radial depen-

dence. In this report, the influence of the wiggler field inhomogeneity

on the electron beam dynamics and hence on the FEL characteristics is

investigated in detail and compared with the effective energy spread
6

approximation. An analytical formula was calculated for the particle

orbits in the transverse direction that includes the nonlinear wiggler

tapering and the untrapping of particles at the edges of the bucket in the

interaction region. This formula will permit the development of a cost-

effective 3-D oscillator code. In the present investigation it was

utilized to predict the behavior of a T14FEL that utilizes a finite emit-

tance electron beam, as a function of input power and to study the effect

on the TWFEL characteristics, (gain, gain spectrum and efficiency) of

Gaussian versus square profiles for both electrons and photons. These

initial studies provide the building blocks for the possible formulation

of numerically cost-effective 3-D analyses valid for small signal as well

as high signal gain.

The effects of the wiggler inhomogeneities were found to be well rep-

resented (withing 10-15%) by an effective energy spread as long as this

effective energy spread is smaller than the ponderomotive force bucket

2 1



height. Thus, it is a bad representation for small signal gain calcula-

tions, even for very small emittance electron beams resulting in a problem

of importance for oscillator start-up. For amplifier operation, the

analysis shows that the combination of the wiggler inhomogeneity and the

initial electron velocity cancels the effect of the betatron oscillations

in the phase equation for the electrons and only the effect of their

initial transverse coordinates remains. That is, once the initial

increase in energy spread due to electrons starting at different positions,

with different amplitude of the wiggler field, is taken into account no

additional untrapping is introduced by the betatron oscillations.

The effect in the deceleration efficiency, and hence in gain intro-

duced by the fact that, due to their betatron oscillations, the electrons

sample different values of radiation power density, is found to depend on

the ratio of the total equilibrium electron beam radius (R ) to the optical
e

beam radius at the waist (Rpw). The maximum effect, however, that occurs

for R /R p 0.6 corresponds to an increase in gain when betatron oscilla-e p
tions are included of less than 15%. A dramatic decrease in gain and effi-

ciency is found as the ratio R /R increases from zero. In particular,e pw
the gain decreases from at R 0, to G /1.6 at R = 0.7 R ,to G /4th andcessfo o a e o • Pw" 0

for R = R
e pw

These results will be submitted for publication as a technical note

and have been presented at the IEEE International Plasma Conference

(Santa Fe, May 1981) and at the FEL Workshop in Idaho, June 1981.

In Section III, the small signal gain studies are presented. The

* results from this investigation were submitted for publication to Physics

Review A and has been accepted subject to small revisions. For a TWFEL,

the gain is enhanced over that of a CWFEL only at a given optimum ampli-

fier operation, input radiation power. For other powers, the gain

decreases and this unusual behavior becomes of concern for oscillator

operation. Further, the gain spectrum itself varies as a function of

radiation power and therefore problems like frequency hopping or multi-

mode operation that can either delay or completely impossibilitate the

arriving of the oscillator saturation state may happen. In this report,

a 1-D analytical and numerical investigation of the TWFEL small signal

I. gain is presented. An analytical formula for the gain was derived that

3



is valid for any "type" of wiggler tapering, including multicomponent

wigglers (Section IV). A parametric study of the small signal gain spec-

trum for different wiggler tapers was carried out in detail.

The small signal gain for a TWFEL was found (as expected) to have the

same general characteristics as for the CWFEL. The unusual result, how-

ever, is that the spectrum shifts and decreases in amplitude as a function

of increasing wiggler taper. Thus, it can be either negative or positive

for y = yr" The maximum positive small signal gain in general occurs for

Y< Yr. For increasing input power, the value of y (or output frequency)

that correspondends to maximum gain for a given taper varies. At the

"optimum" input power for amplifier operation (that at which the gain is

maximum for a given taper), the maximum gain occurs for y = yr" For input

powers higher than this (where saturation occurs for oscillator operation),

the optimum energy is y > yr"

This variation of the gain curve with input power becomes crucial for

an oscillator, since it will determine if the oscillator can be started

at either low input powers for an electron beam with y = y or if large

input powers are necessary, making the oscillator impractical. Further,

if the oscillator is started from noise, it w-ll start at a frequency that

is shifted from the optimum one at saturation. This will result in very

long times to reach equilibrium if it can be reached at all, and an increase

in the output frequency bandwidth.

The results from the small signal gain study motivated the development

of a new FEL configuration that could have high small signal and large sig-

nal gain at the same radiation frequency. This configuration is described

in Section IV. The new FEL scheme is a combination of several wiggler com-

ponents: multicomponent wiggler FEL (MCWFEL). The scheme is similar in

certain aspects to the optical klystron for CWFEL that consists of a "pre-

buncher" and a "radiator" section separated by a drift section. The main

difference with a MCWFEL is that the unusual behavior of the tapered wig-

gler gain curve requires a different arrangement of the components and more

than one radiator. In this manner, each component operates at its optimum

input power and is transparent at others. The components are in general a

couple of constant wigglers, a drift space and a tapered wiggler of appro-

priate Lengths and ordered in an appropriate manner. Encouraging
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I
preliminary results were obtained for a 10.6 Pm device of characteristics

similar to those of the TRW experiment and also for 1 um. The results for

10 Pm are presented in this report. The investigations of gain and effi-

ciency enhancement by a MCWFEL were performed with a 1-D code that assumed

a Gaussian optical beam propagation for both input and excited wave.

Initial studies were also performed of the characteristics of the dif-

ferent wiggler components and its influence in the small gain.

The better MCW configurations were found to be composed of a small

prebuncher section, a drift section, followed by a constant wiggler or

very small taper section for operation at small signal followed by a small

drift section for phase adjustment and followed by a tapered section for

operation at high signal. A number of different configurations and their

main characteristics are also presented in Section IV. The results from

these investigations will be submitted to Physics Review A for publication

and have been presented at the IEEE International Conference on Plasma

Physics (Santa Fe, May 1981) and the October APS Meeting of the Division

of Plasma Physics, New York, 1981.

The investigations carried out by UCLA under subcontract from TRW

jfor the AFOSR are presented in Section V of this report. The excited

radiation pulse, although initially of the same length than the electron

jbeam, changes shape as a function of time due to the difference in
velocity between both pulses. This change in shape due to slippage can

untrap electrons reducing the gain. The effect, that can be small for

an amplifier, becomes quite large in an oscillator. In order to study

these effects as well as those due to the possible growth of parasitic

(trapped particles) instabilities, a 1-D finite pulse code was developed.

The code was tested also for CWFEL. A unique feature of the code, in

addition to the possibility of variable tapering, is the self-consistent

description of the pulse density and of D.C. space charge effects. The

'space charge field is due to the large density of the microbunch electron

pulse and there was initially a concern that it could cause untrapping

due to an increase in the effective energy spread. To date, slippage

and space charge effects as well as the influence of different electron

* and optical beam profiles have been analyzed with this code for amplifiers

of the characteristics of the TRW 10.6 um experiments and for higher
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gain ones. A multimode description that will permit to study harmonic

growth and sideband instability in detail has been included in the codo

recently. In addition, the nonlinear mechanisms which limit the enhance-

ment process of the parasitic instabilities were observed with the use of

an infinite electron beam code and the linear growth of the instabilities

was analytically calculated with a kinetic treatment. Some of the results

from these investigations were published in a Physical Review Letters

paper, a copy of which is attached to this section.

For a TWFEI amplifier, where the gain is moderate, it was found that

the "slippage" and "edge" effect as simulated by the 1-D finite electron

and optical beam pulse TWFEL code do not play a very important role. The

electron dynamics is dominated by the input laser pulse that is modeled

after the TRW experiment. Thus, the input optical pulse is much longer

(1.3 nsec) than the electron beam pulse (30-40 pse-). Still, the overall

(averaged) gain of the system was found to be a factor of two smaller than

the gain at the center of the pulse due to the Gaussian (in length) shape

of the electron pulse and hence of the excited optical pulse. For larger

gains, however, it was found that even for an amplifier the untrappina of

the electron at the edge plays an important role. For example, for a

total gain G = 100 percent, the overall gain is decreased by a factor of

10 with respect to what is predicted by the periodic code. The space

charge effects were found to be negligible in situations similar to the

TRW experiment. This effect, however, can play a role for some of the

planned 1 um experiments if the bunched electron beam has to drift more

than 50 meters between the source and the interaction region. In addition,

the influence of both space charge and slippage for oscillators where small

effects are enhanced by the large number of bounces of the optical beam is

still in progress.

6
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II. STUDY OF THE INFLUENCE OF TRANSVERSE EFFECTS ON THE

CHARACTERISTICS OF A TAPERED WIGGLER FREE ELECTRON LASER

In the Free Electron Laser interaction, the amplitude of the wiggler

magnetic field, the radiation field and the electron beam current density

play a crucial role. Due to the finite geometry Q4C-ef system, all of

these parameters vary not only along the direction of propagation of the

electron beam but also perpendicular (transverse) to it. Hence, in order

to obtain a detailed description of the FEL characteristics it would be

necessary to develop a three or at leaist two dimensional analysis of the

FEL system. Because of the complexity of the problem, these analysis are

in general numerical. In particular, what is required is a two or three

dimensional numerical simulation that self-consistently solves the equations

of motion of the particles and the Maxwell Equations for the fields. Unfor-

tunately, this type of sophisticated numerical study is extremely expensive

and time consuming even for the fast computers of today, and therefore only

very few and isolated results for a few sets of parameters could be

obtained.

Until recently, in order to obtain parametric studies of the charac-

teristics of a FEL system, the transverse effects were neglected and a sim-

plified, and fast one-dimensional analysis and/or numer4 cal simulation was

performed. After these initial investigations, a number of formulations
1 ,2

were developed to include the influence of transverse effects in the FEL

characteristics. In these formulations, the effect of the transverse non-

uniformity of the magnetic field and the particles transverse motion are

assumed neglegible. In addition the system is treated as a low gain ampli-

fier, that is the input signal is assumed much larger than the excited one
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I
and in most cases is taken to be a plane wave. These simplifications are

necessary in order to make the problem tractable computer-wise. Thus, only

the three dimensional behavior of the excited wave needs to be calculated.

The neglected transverse contributions, however, can play an important

role for a practical FEL oscillator. For example, the particles execute

betatron oscillations and sample different wiggler and radiation fields as

they travel along their trajectories. Although this effect has been

accounted for up to now as an "effective" energy spread, it is not clear

I that that is the case for some practical experimental parameters. 3  Further,

a practical FEL oscillator should start up from noise or with a very small

signal and therefore the "amplifier" assumption will no longer hold.

Finally, the diffraction of the input Gaussian beam does play an important

role in the FEL characteristics for sufficiently long interaction lengths.

In order to analyze the importance of the transverse effects in their

totality and to formulate a method that would permit its inclusion in a

numerical code in an effective manner, we initiated a study, the first

results of which are reported in this section. An analytical formula was

calculated for the particle orbits in the transverse direction that

includes a non-linear wiggler tapering and the untrapping of particles at

the edges of the ponderomotive potential well (bucket) in the interaction

region. This formula permits the development of a cost effective numeri-

cal simulation that includes the transverse motion of the particles as well

as the details of an input Gaussian beam. The code, however, neglects the

effect of the interaction on the diffraction of the excited wave. These

effects however would be included with a new formulation that we are devlop-

ing at the present time. The code was utilized for parameters typical of

the TRW experiment and for a parametric study that shows the change in the

FEL characteristics with electron beam emittance and the ratio of the

electron beam radius to photon beam radius.

In general, in a realizable wiggler, the transverse wiggler field is

sinusoidal on its axis. This behavior has been checked, for example, by

measurif the magnetic field on the wiggler axis of the TRW 10.6 Jim experi-

ment setup. 4  In this case, it was found that the contribution of higher

harmonics in Less than 0.1 percent. The fact that the magnetic field is

divergenceless shows that the field has to vary as well in the transverse

9



direction with a similar variation constant. Due to this transverse

nonuniformity in the magnetic field, the electrons away from the wiggler

axis tend to bend toward the axis. Overall, the electron beam exibits a

periodic focusing effect which is usually understood as betatron

oscillations.

The negligence of transverse contributions is justifiable only when

the electrons are very close to the wiggler axis such that they do not

experience transverse variation of both fields. Unfortunately, this is not

the case. With a finite emittance, the electron beam diverges in the free

space. The smaller the beam waist, the greater the divergence of the

electron beam. In order to avoid such problem, the beam has a minimum

waist at the wiggler entrance such that the divergence can be balanced by

the wiggler focusing. It turns out that this radius is comparable to the

characteristic distance of the transverse variation in the wiggler field

and radiation field. Therefore, the transverse effect can not be neglected

completely without careful justification.

For a plane-polarized (in the x direction) wiggler, the magnetic field

can be found easily from V-A (x, z) = 0 and the assumption that the fieldY

is translation invariant in the y direction.

A (x, z) = A cosh k x cosk z (1)y o w w

where A is the vector field amplitude and k = 2n/A is the wave number ofo w w

the wiggler field. The vector field in equation 1 gives the transverse and

longitudinal magnetic field as

B (x, z) = B cosh k x sink z

(2)

Bz(x, z) = B sinh kx coskwz

It can be seen that the longitudinal and transverse field variations are

not independent of each other. They have the same characteristic constant,

kw, however, the transverse variation is in hyperbolic functions. On the

wiggler axis, B reduces to a sinusoidal function of z and B vanishes.

x z

10
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The field in equation 2 represents correctly the wiggler field near the

axis for any wiggler design. For the field far from the axis, it is

structure-dependent and has to be determined by boundary conditions. How-

ever, the far field is of little use because the field in equation 2 covers

well the region of our concern.

In a magnetic field (equation 2), the Lorentz equation describing the

electron trajectory is reduced to

2 a2ak
dx sinh 2k x (1 + cos 2k z)
dz2 42 w w

2 a2 kd CAz) = w w (1 + cosh 2k x) sin 2k z (3)
dz2 4y2 w w

eBa -=c~

mc k
w

where a is a dimensionless wiggler field amplitude and Az is the positionw

deviation of the electron from a freely propagating beam. In equation 3,

we have replaced the time variable with the position variable z.

The term, cos 2 kw z, in equation 3 is a fast oscillating contribution

to the trajectory. However, the variation in x is much slower and hardly

affected by this fast osciallation. This argument is supported by numeri-

cal simulation which shows that the fast oscillating term can be completely

neglected without introducing any significant difference in the result.

Moreover, for typical experimental parameters 4 x is about 1 mm which gives

2k x = 0.3. Therefore, sinh 2k x can be substituted by 2k x within an errorW w W

of 2 percent. The resulting equation is quite simple

d2 a 2  k 2

dx _ w w (4)

dz 2  - 2 2

11



Equation 4 is identical to a simple pendulum equation with samll

amplitude. All electrons have the same oscillation period

A= W (5)
a w

An exact calculation of equation 3 gives a shorter period for the outer

electrons. However, the difference from equation 5 is minimum. The

electron trajectory is then found to be described best by the equation

(x(z\ cos kz sin kz (0~)\
u(z)/ \-sinkz coskz ) \u(o)) (6)

u = v (z)/(kc)x

k = 27/A

where u is a measure of the transverse velocity in units of length, and k

is the wave number of the betatron oscillation. Equation 6 indicates that

the propagation of electrons in a constant wiggler is only a rigid rotation

of its distribution in the phase space x - u. The rotation angle, kz, is

directly proportional to the propagation distance. The invariant quantity

for individual electrons is (x2 + u2). Obviously, the electron distribu-

tion is an invariant if the initial distribution is isotropic in the phase

space. For a Gaussian distribution, the density can be written as

Ne  e 2
(7)

N eeex

where x e and u are the beam radius in real and velocity space. The con-

dition x = ue defines the equilibrium state for the electron beam where

the beam radius remains constant. At this point, the beam divergence due

12
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to finite emittance is exactly balanced by the beam focusing due to the

transverse field gradient and the equilibrium radius is obtained as

•x 2 E (8)e =

where E is the beam emittance.

For x : u , the beam divergence and focusing do not exactly balance

e  e
each other. In this case, the beam profile oscillates at the period of

the betatron oscillation with the maximum (minimum) radius equal to the

larger (smaller) value of x and u
e e

For a tapered wiggler, the situation is complicated by the z - depen-

dence of b (z) = a (z)k (z). However, to a very good approximation, wew w w
found that the trajectory of an electron in a tapered wiggler can still be

described by the equation

CXWz cose sineI X(o)
VWz) lsin6 cos /)\ VWo),(9

X(z) = [g(z)] 1 /2 x (z)

V(z) = [g(z)] - 1 /2  + ")-Z x)z) /k (10)C 2g(z)

g(z) = b (z)/b (o)
w w

a = k g(z) dz

Therefore, the beam propagation can also be described by a rigid rotation

of the electron distribution in a new phase space X-V where the coordinates

are defined in equation 10. The real space coordinate is scaled down or

up according to the square root of the taper function g(z). Except for the

scaling factor [g(z)] - 1/2, the new velocity cooridinate, which is in units

of length, has a smalL mixing part coming from the space coordinate. For

13



practical applications, this mixing in the velocity coordinate is

negligible. The najor effect of the tapering on the trajectory is in the

scaling factor. Since, X2 + V2 is an invariant quantity (cf Equation 9),

we find that the beam radius increases with the decreasing b (z).

Due to the betatron oscillation, the electrons experience different

field amplitudes as they propagate down the wiggler. However, the trans-

verse variation of a within the electron beam is less than 5 percent. The
w

energy equation describing the electron energy loss rate is hardly affected

by the oscillation. The case is different when we consider the phase

equation

dl = k s + + 2 + ( 1

d-z W - 2y2 2 y 2

which has been averaged over the magnetic period. V in the square bracketx
survives the averaging because its variation distance is much longer than

w . Using the expression in a w(x, z), we have

k a (z) b (o) b (z)k _ s J 1+ + +
dz w 22 2 2

(12)

v

[g(z) x2Cz) + x 2 2g(z)c k2

The quantity in the square bracket is an invariant and depends on the

initial conditions of individual electrons. Therefore, the betatron oscil-

lation does not appear explicitly in the phase equation. Equation 12

points out that the invariant quantity represents an equivalent energy

distribution and could be replaced in principle with an equivalent "effec-
5

tive energy spread". This approach would present an advantage for the

numerical simulation. Since we could transform two degrees of freedom,

x and v x in the simulation code into one, the energy spread, which can be

14
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further merged with the real energy spread, if any. For an electron beam

in equilibrium state, the effective energy spread is given as

)e f f 
( 13)

where x is the equilibrium radius. This result, however, is not valid

for any electron beam emittances. If the effective energy spread is of the

order of the height of the ponderomotive potential well, the untrapping of

electrons plays an important role in the tapered wiggler FEL at optimum

power and this effect has to be included in the description.

In order to study in detail the influence of the various transverse

effects and to compare with analytical predictions and simplifications, a

numerical code was developed that follows the electron equations of motion

in 3-D and assumes an input proton beam that can diffract as a Gaussian beam

and can have any initial profile. With this code, numerical simulations

were performed for parameters characteristic of the TRW 10.6 pm experiment.

The gain of the system was evaluated and compared for three different

profile combinations:

1. Square profile electron beam, square profile photon beam

2. Square profile electron beam, Gaussian profie photon beam

3. Gaussian profile electron beam, Gaussian profile photon beam

Case 1 has been applied up to now most extensively in the scaling and ana-

lytical studies for its simplicity.6  In Figure 1, we show the gain depend-

ing on electron beam emittance. The photon beam waist radius Rp is set at

2mm which corresponds to lcm-mrad emittance for the electron beam. With-

out the betatron oscillation, it is easy to understand that the gain is a

constant when R < R and decreases quadratically when R > R . With thee p e p

betatron oscitlation, the gain curve becomes smoother. However, the gain

drops at Re < R due to the effective energy spread and becomes higher at• p

R > R because the outer electrons still have the chance of passing the
• p

optical beam region.

15
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For cases 2 and 3, the gain curves are similar. The peak gain at zero

emittance is about 50 percent higher than the gain for a square photon beam.

This is reasonable because the peak intensity of a Gaussian beam is about

50 percent higher than a square beam intensity with the same total power.

The gain drops fast as the emittance increases. The gain is only one-

fourth of the peak value at R = R and is close to the value in case 1• p

only around Re = 0.5 R . Therefore, gross overestimates of the gain are

obtained when it is based on case 1. Further, Figure 1 shows that for

optimum operation R should be i 0.5 R ! As can be seen from the inserts• p
of Figure 1 the square electron beam has more electrons near the center for
R e< R Once R is larger that R , the square electron beam loses

electrons faster than the Gaussian electron beam. This is the reason why

the gain for a Gaussian electron beam is higher (lower) than the gain for

a square electron beam for R e R (R < R ).e e p

In Figure 2, we show the gain for square electron beam and Gaussian

photon beam and compare it to the gain curve if we had used an effective

energy spread in Equation 13 for a given emittance. The result proves the

validity of using the effective energy spread to replace the effect of

beam emittance for small electron beam emittance. However, for large beam

emittances this is not the case. The emittance is considered "large" if

the "effective energy spread" is larger than the height of the pondero-

motive potential well. Even for very small emittance beams this will be

the case at small signals. The finite electron emittance small signal

gain is analyzed in detail at the end of this section. The case including

the photon beam diffraction is also shown in Figure 2 for comparison. These

results show that the photon beam profile and ratio of R /R and effectivee p

energy spread (emittance)/bucket height play a more important role than

diffraction in determining the FEL gain.

From the above series of results we conclude that in a number of cases

the effective energy spread and square photon beam profile can not be

utilized to simplify the code. However, instead of following every electron

down to the wiggler, the numerical simulation of a free electron laser can

be much simplified by assuming that every electron follows the analytical

trajectory obtained in equation 6, for a tapered wiggler. To apply directly

this trajectory equation in the code, a preliminary knowledge of g(z)

LL. ._ 17
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and optical beam profiles have been analyzed with this code for amplifiers

i-- of the characteristics of the TRW 10.6 um experiments and for higher

5 '

becomes necessary. In the low gain limit where a is assumed to bes

constant, it is well knows that aw (z) or Xw (z) is linearly decreasing. In

the high gain regime, the growth of as has to be considered in the self

consistent equationsI
da

2  2w 2
s p < dy 1  (14)

dz 2 dz (

trapThe ensemble average < > can be represented by the fraction of

trapped particles assuming that the untrapped particles have no contribu-

tion at all

~dy r Nt(z)
<- N (15)

<dz>'cdz Ne

The simplest approximation is that the number of trapped particles does

not change, i.e. Nt(z) = constant. However, this does not lead to an

analytical solution of the equations. In order to obtain an exact

solution for the self-consistent equations, we allow detrapping of

particles and assume

Y r(Z)
Nt(z) = Nt (o) r (16)

Using Equation (16), we solve self-consistently a (z) asw

2kwa sini r

a (z) = a (o) cos Kz - w r sin Kz (17)
w w K

W ptsinr
K =r

In Figure 3 we compare the behavior of a (z) for the linear variation,

actual simulation Opr = 350) and the nonlinear variation given byJ Equation (17). It shows that the prediction of yr (z) and gain is much

better for the nonlinear a (z).
w

19"1. !  :
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USING ANALYTICAL FORMULAS (---,- .) AND FORMULATION ()

0.96
40R-350

a wo.94 -N

LINEAR N

- SIMULATION

0 NONLINEAR

-a - L

aw(o) aw(L) "IR(0) "R(L) GAIN

SIMULATION 0.980 0.894 49.83 48.45 1.31

LINEAR 0.980 0.910 49.83 48.70 1.14

NONLINEAR 0.980 0.893 49.83 48.44 1.38

Figure 3. aw Variation, Deceleration Efficiency and Gain (A =.const).20U
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For variable magnitude period, the assumption for the z-dependence of

N t(z) can be more justifiable. Since the height of trapping potential is

2awasy r

Bucket height =r (1r (18)

it is reasonable to assume that the number of trapped particle is

proportional to the bucket height:

Nt(z) = N t(o) . y r ( z )  a Cz) (19)

rf(O) a s (o)

Using (19), we obtain a self-consistent tapering in the wiggler pitches

(z)= (0) r - z l1+pz+ 1/3(pz) 21 (20)w w 112

2
P pt2k s

P 4 42 2

Yr Ws

In Figure 4, we compare X (z) for the linear variation, actualw

simulation (r = 350) and the nonlinear variation given in Equation (20).

Since Equations (17) and (14) are analytical and integrable and

describe much better the real tapering of the wiggler, they can be used

in Equations (9) and (10) for the electron trajectories.

Since an electron's initial conditions, x(o) and Vx (0), determine its

equivalent energy, y, in the phase equation, it is important to check the

dependence of the gain spectrum on the electron transverse distribution.

In particular, we are interested in the small-signal gain because it plays

an important role in the oscillator start up. This spectrum is well known

analytically for a zero emittance electron beam. Based on the phase

Equation (12) and the energy equation. We can obtain the small-signal

21



USING ANALYTICAL FORMULA E--. ) AND SIMULATIONS -)

3.55
'R "350

3.45

LINEAR

SIMULATION
- - -'- NONLINEAR

3.35

Xw(0) Xw(L) R (0) 7R( L )  G,6104

SIMULATION 3.556 3.352 49.83 48.38 1.36
LINEAR 3.556 3.391 49.83 48.66 1.19
NONLINEAR 3.556 3.360 49.83 48.44 1.41

Figure 4. A Variation, Deceleration Efficiency and Gain (a = const).w w

22



energy loss of each electron from a general 1-D small-signal theory (7)

(see section III). The energy loss is proportional to the derivative of

the spontaneous spectrum generated by that particular electron

= i (21)

h dz =0

where Q is the far field amplitude, JQI 2 is the spontaneous emission

spectrum and h is the initial detuning constant.

In order to obtain the total energy loss of electrons, we integrate

A over the initial electron distribution. For the case of a helical

wiggler the total energy loss is

AT= T A(r) f(r) r d r (22)

I 0

f(r) rdr = 1

where f(r) is the normalized electron distribution. If the wiggler is

sinusoidal, elliptical coordinates must be used to describe the electron

beam distribution. Assuming that all the energy extracted from the

electron is converted to radiation, the radiation gain will have the same

energy spectrum as the energy Loss in Equation (22).

As a demonstration of this calculation we assume that the electron

beam has a uniform distribution in the phase space up to the circle X2 +

V2 = R2 . The integration (22) results in

R

= R2  f c IQI2 r dr (23)

0
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where r is the radial distance from the origin in phase space. Since

hk +k + b 2  21 (24)

w 2y 2  1 w r

we obtain

2

AE= - ROkb f.Q12 dhT R2Rk b 2jn Q fdh

5w

2

R2ksbw 2  [ia 2y=o - IQi2YR (25)

where R is the beam equilibrium radius. Therefore, the gain spectrum is

a Raman-type which is the difference of two spontaneous spectra with a

relative shift equivalent to the beam radius. This result is demonstrated

by a numerical simulation of a 10.6 pm experiment with zero tapering. The

electron beam radius is 2mm which results in an energy shift of about 1.75

percent. The simulation is done at 0.01 Mev input radiation power which

is within the small-signal regime. The gain spectrum (Figure 5) clearly

indicates the theoretical prediction in (25). As the electron beam radius

approaches to zero, the dip and peak of the gain curve will move close to

each other. At the zero Limit, it reduces to the well known gain spectrum.

For a plane-polarized wiggler, we have a similar result. The gain

spectra for different emittance are shown in Figure 6. It can be seen

that the gain curves are antisymmetric. The peak gain drops and shifts to

the right as the emittance increases. The negative gain almost stays

stationary. It shifts from hL = -2.6 to approximately hL = 0.

It is interesting to compare these curves with the corresponding

results for gaussian electron beam (Figure 7). The peak gain is smaller

for the gaussian beam and the gain curves are highly asymmetric. However,

we observe a long tail of positive gain on the side of positive hL. Hence,

the effects of finite emittance plays a large role at small signals where

the effective energy spread assumption is not valid.
24
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III. GENERAL I--D THEORY OF MULTI-COMPONENT WIGGLER FREE ELECTRON

LASERS IN THE SMALL-SIGNAL REGIME

III-1, INTRODUCTION

It is welL-known that a properly tapered wiggler can extract more

electron energy than an untapered wiggler to amplify the input signal of

a high frequency free electron Laser (FEL).1  The physical principle is

based on keeping the phase velocity of the ponderomotive potential well,

formed by the interaction of the wiggler field with the electrons and the

radiation field, in pace with the electron mean velocity in such a way

that the energy extraction process can be continued down the wiggler.

This is accomplished by either spatially varying the phase velocity of

the potential well (bucket) or by replenishing the longitudinal energy

Lost by the electron beam to radiation. The phase velocity can be varied

in a controlled manner by adiabatically tapering the wiggler period

whereas the longitudinal electron energy can be replenished by either

adiabatically tapering the wiggler amplitude or introducing a d.c.

longitudinal electric field. The electrons that are initially trapped in

the bucket tend to remain trapped if the motion is sufficiently adiabatic.

As the bucket energy or its amplitude decreases, the mean energy of the

trapped electrons is reduced. The extracted electron beam energy provides

the amplification of the input laser signal.

The appropriate taper of the wiggler depends on the rate of change of

the electron beam energy which is in turn strongly related to the radia-

tion field strength. Therefore, a wiggler with a given taper is optimum

only for certain input laser power level. The single-pass gain decreases

29
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for either higher or lower input power. At low input powers (small

signal), the gain can drop to a much lower value than at high powers and,

in some cases, can become negative. This could present serious problem

for the start-up of a free-electron laser oscillator.

If the oscillator is started by injecting a low power signal at the

desired wavelength, the system will be practical only if the injected

power is less, at least, than one-tenth of the optimum power. Usually,

this power level is well within the small-signal regime. If the roundtrip

cavity loss, including the output coupling, is Larger than the single-pass

gain, the oscillator can never start. The characteristics of the tapered

wiggler FEL at optical frequencies are such that even in cases where the

small-signal gain is higher than the threshold value, the net gain is

usually too small for the radiation field to reach its saturation within

a finite number of passes (typically, for a high current accelerator,

there are only several hundred micropulses in an electron macropulse).

Recently, it has been suggested that the small-signal gain, as well as the

Large-signal gain could be enhanced by utilizing multicomponent devices
2 - 4

or optical klystrons. 5- 6 (next section IV)

If the oscillator is started from the noise level, it will oscillate

at the wavelength where the gain is maximum. The maximum energy extraction

occurs when there is maximum overlap in the interaction region between the

electron mean velocity and the bucket phase velocity (resonant). However

at small signals, the electron energy Loss is slower than the rate for

which the tapered wiggler is designed. Thus, to obtain higher gain at

small signal Levels the starting electron energy would have to be lower

than the resonant energy. For fixed electron energy, this means that the

wavelength at which the maximum gain occurs varies with the input power.

This effect can produce a shift of the operating radiation wavelength as

the radiation builds up inside the cavity. In addition, it also suggests

that injected oscillators should be started with a signal at the maximum

gain wavelength instead of the final, desired wavelength. Although this

might solve the start up problem, it can delay the time to reach steady

state beyond acceptable limits. The adiabatic condition for the shift and

how it proceeds at the expense of the interaction gain need to be studied

carefully.

30
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In order to analyze these two aspects of a tapered wiggler FEL

oscillator, we undertook the study of the more fundamental problem that is

reported in this paper: the analysis of the small-signal gain spectrum

which determines the gain magnitude as well as the operating wavelength.

The result from these studies motivated a full investigation of the novel
3

multicomponent wiggler scheme. The analysis of this scheme is reported in

detail in the next Section IV where the characteristics of the Tapered

Wiggler FEL as a function of cavity or input radiation power are discussed

111-2. SPONTANEOUS SPECTRUM

In this subsection, we calculate the classical radiation due to the

periodic electron motion in a tapered wiggler. The wiggler is assumed to

have plane polarization and the vector potential can be written as:

AL(z) - A(z) cos(S k (z)dz x (1)

The calculations can be easily generalized to any field polarization. Far

away from the wiggler, the energy received at the detector, dW, per unit

angle, dQ, per unit frequency interval, dw, is7

z 2d 2 e 2  L D ^ n [ - ;(z))
2 -- n x n x B(z) e dz (2)

where n is the direction of observation, L is the wiggler length t(z) is

the electron velocity at position z in units of the Light velocity in

vacuum, c, and w the emission frequency.

The integral in (2) represents the complex field amplitude and

contains all the informations of the electron motion inside the wiggler.

We are especially interested in the forward spontaneous spectrum where

n z. In this direction, the complex amplitude becomes

31



L - [1 S - z)] dzzQ S S(z) e - (dz

8,(Z) 2 cos (z kw(z)dz)YMC so
In the integrand in (3), a,(z) is the electron transverse velocity indica-

ting the radiation strength at position z while {w/c fZ[i - a Cz)]dz} is

the relative phase delay of the radiation arriving at the detector. If

the Longitudinal velocity, az, is a constant, (for example, in a con-

stant helical wiggler), the complex amplitude is the Fourier transform of

the electron transverse motion. If 6 is not a constant, the situation is

more complicated. However, the fast oscillation in B can be averagedz

over to obtain:

Q L aw(Z)e - if(z) dz (4)

where; f(z) = So g(z) dz

k a 2 ( )g(z) = k (Z) s I +2y22

aw(Z) eA( ks
mc

g(z) is the Local detuning function between the electron and the ponderomo-

tive potential. f(z) is the accumulated phase factor. For given a (z) andw

k (z), the spontaneous spectrum can be obtained by calculating the integralw

in (4). The detailed result for several wiggler schemes is shown in 111-4.
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111-3. SMALL-SIGNAL GAIN

The interaction of an electron with the radiation inside the wiggler

can be described by the following one-dimensional equations of motion

d k a a (z) sin 4 (5a)dz ss w

k [ () - k 2 asaw(z) cos (5b)

= (kw + ks ) dz - wst

2

eEk
a -

s 2
mc

where E is the radiation field amplitude and ip is the phase position of

the electron in the ponderomotive potential well. In Equations (5a) and

(5b), we have averaged over the fast oscillations of the electron motion

at the radiation and wiggler period. The term (a a cosp) in (5b) is smalls w

and usually neglected in the calculation of the gain. However, we find

this term is essential in providing an exact relation between the small-

signal gain and the spontaneous spectrum as it will be shown later.

In the small-signal regime, the dynamic variables C and p can be

expanded in powers of aS

(0) + E(1) + E(2) +

(6)
(0) + *(1) +

V 33 *,,,
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(n) Cn) n
where C and (n represent the terms proportional to a. Substituting

(6) into (5), we have the following iterative equations

d J(O) ~k(Z) k 2 + ]i (7a)
dz W 77-7 a

1) 
II

-- =- k a a (zsin (7b)

cl (1) k SE + +] k+ a a (z) cos* (0 )  (7c)
-z = 2 -0)" 2 2E(0

d& kaa(z) ) cosO (0) (7d)
dz s saw

(0) = y2 (1) (2)
with the initial condition & = , and can be obtained by

straightforward integrations of (7)

Lr

= - a a(Z)sin [ o + f(z dz (8a)

k2a2

'2 k a 2 L
-(2) s. S 2 a W(z) cos [io + f(z)]dz 2

k3a2  L  z a2 (z') dz
+ 2- s aw(z)Cos NO + f(z)] dz I + w 2

ZI

0 a w(z") sin [%o + f(z")] dz'' (6U)

where 0 is the initial phase of the electron and f(z) has been given in

(4). We are interested in the electron energy in units of the electron

rest mass, y, which is related to she dynamic variable C as
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(1) = (9a)

(2) (2) 2 (9b)

Substituting (8) into (9), we obtain the first and second order

corrections to the electron energy. We can then go on to calculate the

ensemble averages (over the initial phase 0o) of two quantities: the

phase averaged energy change <Ay> and the phase averaged energy spread

<(Ay) 2> that are related to the small-signal gain and the spontaneous

spectrum respectively for small gain systems and monoenergetic beams.

2 <Y(1)2 (Ca)<y t  > ='< >

k2 a2 L L

S dz o z2w wz2)cos [f(zl) f(z2)182

<Ay> =<y(2)>

(lOb)

Y 2 dz I Io dz 2  j 2-Yaw(zl)aw(z2 )cos [f(z]) - f(z 2 )]

Comparing (lOb) with (lOa), we prove Madey's theorem 8,9

< Y < (AY) 2> (1

It has to be .mphasized that we have proved this theorem for any wiggler

configuration. Further, the wiggler variation does not need to be
8

symmetric as the assumption given in the originaL paper. Since there is

essentially no restriction on a (z) and k (z), the theorem is alsow w
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applicable to the multicomponent wiggler or the optical klystron as long

as a (z) and k (z) are slowly varying.w w

The small-signal gain in the radiation power, = cE 2/8w, can be

derived from the extraction efficiency, n, if it is assumed that all the

energy lost by the electron beam goes into electromagnetic energy;

2a2
_AY> k S a IQ2  (12)

Y Y Y

2
G (L) - Input e-beam Power = - - 1Q1 2  (13)

(0) nInput Radiation Power 2c2  3y

where IQI2 was given in (4). From (9), we find that the small-signal gain

is exactly proportional to the slope of the spontaneous spectrum. Note

that if the small term in (5b) would have been neglected, the small-signal

gain would be

2

G'= - + IQ1 2  (14)

2c 
2  3

Although (2 /y) is much smaller than 0 /3y) in the relativistic Limit, it

violates the exact relation that follows from Madey's theorem.

The gain expression in (13) is compLetely general. It is derived for

arbitrary variation in the magnetic amplitude and period including multi-

component devices and optical klystrons. In these devices, the drift

space can be represented by a (z) = k (z) = 0. As it will be shown inw w

the next section, an optical klystron is a particular case of the multi-

component device. Instead of its physical drift distance, we have to

apply the effective drift distance which is due to the use of dispersion

magnets.
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I
I 111-4. APPLICATIONS

In this subsection the formulas derived in Section 111-2 and 111-3

for the spontaneous spectrum and small signal gain are applied to

particular devices. We first show that for constant wiggler the standard

result is obtained and afterwards generalize to tapered wiggler and multi-

component wiggler. In order to obtain a simple analytical result the

electron beam is assumed cold (zero energy spread).

A. Constant Wiggler

For a constant wiggler, the complex field amplitude is reduced to

Q w r L  -01 ihz d

a a 2
= c dz

[ 4]o(15)
h = k s I +

Hence, its spontaneous spectrum is the well known spherical Bessel func-

tion squared

dww 2
- 2 2 o (x) (16)16 i2cy2 x hi-

C XT

The small-signal gain, obtained as shown in Eq. (13), is

Gc = w2kL3 2 - 2 cosx-xsinx
2cy x3  x = hL (17

and it peaks at hL 2.6, yielding the standard formula
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w2k 3a2

G -0.27 p w w (18)
c,max 4c2y3

B. Linearly Tapered Wiggler

For a tapered wiggler with the variations a (z) and/or k (z),w w

Equation (4) and (13) can be used to calculate the gain and the spontaneous

spectrum numerically. Since the spectrum is the result of interference of

the fields radiated from different parts of the wiggler, the phase factor

f(z) is far more important and sensitive than the radiation strength fac-

tor, a Cz). For simplicity, we consider the linearly tapered wiggler withw

the variation

g(z) = h + az (19)

and calculate the spontaneous spectrum to be

222

dW = e -. w'a I [C(p) - C(q)] 2 + [S(p) - S(q)]2
d l62cy2

p = L + h (20)

h

where h is the initial energy detuning, a indicates the degree of linear

tapering, C and S are FresnaL functions. Since

C(-p) = - C(p), S(-p) = -S(p) (21)

the spectrum is symmetric about p =-q, i.e.

h - aL/2 (22)
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I
which means that the wavelength at which the spectrum is centered is

I determined by the parameters at the mid wiggler. If we choose to fix the

wiggler parameters at the entrance, as we vary the wiggler taper, it is

expected that the center of the spectrum will shift to lower values of h

(shorter wavelenghts for a fixed electron energy) with increasing tapering
2

for positive a. The spectrum, for values of aL = 0, 10, 20, 30, 40, 50

is shown in Figure 1. When the taper increases, we find that the peak

intensity drops while the first sideband is enhanced. In particular, at
2

aL = 30, the magnitude of the fundamental and first sideband are almost

the same and the spectrum shows a plateau extending over a wide range.

For aL2 Larger than 30, the center intensity drops even further and the

spectrum extends rather irregularly.

It is useful to relate the parameter a to the taper rate for constant

amplitude or constant period wigglers. For constant amplitude

k X w(0) - X w(L)
-t- - (23)
L X W(0)

and for constant period

a2 k aw(0) - aw(L)

a W

2

The small-signal gain for a linearly tapered wiggler is obtained by

taking the derivative of (20)

22 2 2

-2 w w os+- Cos [C(p) - C(q)]

2c y ova/+ s 2 __2 2 (25')'

+ si !] Is(p) - s(q)]
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which is identical to the result obtained by C. Brau. The gain spectrum

is antisymmetric about the point p = -q and is shown in Figure 2 as a func-

tion of the wiggler taper and the energy detuning. To simplify the figure,

the negative gains are suppressed, however, they can be figured out easily

from the antisymmetry relation. Figure 2 shows that the main bump in the
2

spectrum decreases appreciably and disappears completely after aL = 30.

The small bumps on the negative side of h vanishes even faster except for

a rising bump within the range -2fr < ChL + aL 2/2) < 0. This becomes the

major contribution at large tapering. It is interesting to note that the

peak gain shifts toward negative h and decreases in magnitude as the taper

rate increases. Eventually, the first side lobe disappears completely and

it is replaced by the main peak, as the shift of the whole structure con-

tinues, the relative amplitude between the main peak and the remaining

sidebands decreases and can become smaller than 1. Thus, the spectrum

tends to remain rich in structure and with its maximum gain near

h = 0 (y 9 yR) . In order to compare with Figure 1, the gain spectrum is

shown explicitly in Figure 3 for the corresponding linear taperings.

In Figure 4, the relative value of the gain is shown in contours of

equigain. The value indicated on each curve is the gain compared to the

maximum gain (0.27) for the constant wiggler (see Eq. 18). Note that, at

= YR" the gain can be negative for certain tapering ranges. Obviously,

for the oscillator start-up at the desired wavelength, these regions

should be avoided.

C. Two-Component Wiggler and Optical Klystron

A two-component wiggler device is composed of two wigglers (constant2

or tapered3 "4 ) in series with a free drift space between them (Figure 5a).

For a first component or prebuncher of appropriate length, the electron

bunching usually increases with the drift distance. In order to increase

the drift distance without affecting the device length, dispersion magnets

are introduced in the drift space. A typical arrangement is shown in

Figure 5b. The free-drift space can be represented by a = k = 0. Thew w

phase advance of the electron relative to the radiation in the free drift

space can be calculated from the phase equation. With a drift distance

LD, the phase change is

41



s0 40t 30 20 10 0

U,

to

Fiue20anSrcuea ucino h ae

aI2 an-h euigPaaee h

Figure2. gai e Strctuens a unctpnefs teeTpe

42



CYr

-30 -25 -2 -15 -0 -5 0 5

hL

Figure 3. Gain Spectrum for ciL2  0, 10, 20, 30, 40 and 50.

43



.........................................
... .........

.. ...... . . . ..

.... . ... . .
-.

.. .. ...

. .... . .. .. ...

...............................

. .......

. .... .. .
........

.........
........ .... .

Figure ~ ~ ~ ~~~..... 4.Th...u.o.ai ..... i.onous.Th...e ndcae
on~~~~~~~~~~~~~ EahCreI h anCmardt h aiu ano

a ~ .. Costn .i e (0.27)..

....... 44



E-F.AM

-I. -_ _ __

a.. L I. LD not L2  -

DIVERSION MAGNET

L- Aft L4 L2 -]

.. .1 !z

Figure 5. TypicaL Geometry of a Two-component Wiggler (a) and an
Optical KLystron (b). The Curve Shows the Dispersion
Magnetic Field in the Drift Space.

45



k
S = LD  (26)

2y
2  D

For two electrons with energy difference Ay, the difference in the phase

change is

ksL Ds D Ay (27)

3

For the dispersion magnets, the electron flight time is highly energy-

dependent. For the dispersive magnetic field geometry shown in Figure

(5b), the induced phase difference for Ly is found to be

A(12 Ay (28)48y 3  \mc/ -

Comparing (28) with (27), we conclude that an optical klystron with a

dispersion magnet is equivalent to a two-component device with an

effective drift distance

L D (29)
\mc/

The effective drift distance is proportional to the magnetic fieLd

squared and to the cubic of the physical distance between two sections,

L pD Since these two devices are equivalent, both can be described by

calculating the gain for a two component device with an effective drift

distance LD. In order to calculate the small-signal gain we first have

to evaluate the integral Q in the spontaneous spectrum.

Since IQI 2 is a double integral of real functions
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IL
IQ2  dz1  dz2aw(zI)aw(z 2) cos (f(z I) I f(z2)] (30)

The integration can be divided into three regions: i) 0 < (zi, z2) < L
ii) LI + LD < (Zip z 2  < L, iii) 0 < zI < Lip L1 + L D - z2 < L or 0 < z2

L1, L + L _Z L. The integral in the first region represents the

spontaneous spectrum from the first wiggler while the integral in (ii)

represents the radiation from the secnd wiggler. The integral in region

(iii) represents the interference of the radiation fields radiated from

different wigglers. Therefore,

L L2

IQI 2= IQl2 + IQ 12 + 12 o1 dz 1  o dz 2  wl(zl)aw2 (z 2 )
2Y 00

. (31)

cos l fl(zl) + f2 (z2 ) s LD2y2

* From (31), we observe that the spontaneous spectrum, in general, is not

the same when we exchange the position of two wigglers unless the whole

device is symmetric, i.e., L1 = L2 and

ar(LI - z) - a 2 (z) (32)

1g(L1 - z) = g2(z)

* where g(z) is the local detuning parameter defined in (4). The small-
2

signal gain, which is the derivative of IQI , is thus not the same for both

cases.

-In what follows, we will analyze two two-component wiggler devices:

constant-constant wiggler (CCW) and constant-tapered wiggler (CTW). CCW

is the usual case considered in optical klystrons while CTW is suggested
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for the enhancement of the smalL signaL gain of TWFEL. For the case of

CCW with the same constant parameters aw and kw, JQJ is calculated to be

2 ( hL hL111 __ 1 1 1

h2 _ cos hL1  - cos hL2  + 2 sin-I sin-2

cosi hL + hL2  2 (33)

The small-signal gain is obtained by taking the derivative cf (33) with

respect to y. In the case of an optical klystron with dispersion magnets,

L D is much Larger than L1 or L2 and we have

Y 2  2 ssin--- s sin h(Ll + L2) 2h Y

The values of hL1 and hL2 are of the order of unity. The quantity

(ksLD/2y ) can be varied within a range of 2ir by just changing LD within a

magnetic period. Therefore, we can always adjust LD such that the third

sine function becomes 1. The function (sin h 1/2 and sinhL 2/2) is maximum

when L1 = L2 = Lo . Therefore, for the same total interaction Length, we

get the best efficiency when the two sections are identical. The maximum

gain for an optical klystron with dispersion magnets is obtained at h = 0.

OK a2w 2LL
G = w p o D (35)
max 2 c3y 5

Comparing this gain to the maximum gain of a constant wiggler of Length

2Lo, we find
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GO K  I + a2/ 2  L
c,max w D (35)

G 0. 54 LC
cimax 0

which shows the factor of gain enhancement by an optical klystron. The

result is in agreement with previous derivations.2  From (35), we find

that the maximum gain is proportional to the interaction length squared

L0, and the effective drift distance, LD. The width of the gain spectrum

can be found from (34)

(ksLD) 
7T

2y 2 =

AX 2 X

or Xs = Y TD (36)

When LD is large, the value in (37) is very small and highly restricts the

electron energy spread to avoid a decrease in gain. For example, for X =s

10 pm, LD = 10 m and y = 50- the electron energy spread is required to be

less than 0.25 percent.

It has to be reminded that the introduction of LD has two purposes.

It transforms the energy modulation of the beam from the first wiggler into

space modulation and places the modulated beam at the best phase position

for the energy extraction in the second wiggler. The space modulation

process needs a length comparable to or longer than the interaction length

and is responsible for the high maximum gain in (35). The phase adjustment

requires a much shorter distance, of the order of the magnetic period. It

appears in the argument of the last sine function in (34). These two

characteristic distances are so different in their orders of magnitude that

they can be taken as independent parameters.

Next, we consider a two-component device where one of the wigglers is

linearly tapered. The constant section can be put in front of the tapered

section (constant-tapered wiggler, CTW) or after the tapered section

(tapered-constant wiggler, TCW). Both schemes can be used to enhance the
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small-signal gain over that of a tapered wiggler of the same total Length.

CTW is also especially useful at large signals because the constant section

provides a bunched electron beam for the tapered section. By substituting

the function f(z) for both sections into (31), we can calculate the inter-

ference term in IQ12

(38)

aa h L
Qn C sin 2 cosM [C(p) - C(q)] +sinM [S(p) - S(q)•C

where a,p and q are given in (20) in terms of the parameters of the tapered

section. The subscript c and t indicate the quantity for constant and

tapered section respectively, and

2 ksLD -hCL for C+a 2 2 2

M=

(aLt + ht) 2  ksL + h L (39)

+ for TCW2a 2y 2  2

where hc and ht are the degree of detuning for the CW and TW respectivey.

Therefore, both schemes produce similar spectrum except for the argument M.

If LD is much larger than Lc or Lt (which is the case if a dispersion

magnet is used) the gain can be obtained easily by taking the derivatives

of sin M and cos M in Equation 38 and discarding all terms except those

proportional to LD . In that case:
D'

w a k L h L
G + p sin C sinM [C(p) - C(q)] - cosM [S(p)-S(q)]
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where positive and negative signs are for CTW and TCW respectively. The

gain becomes maximum at hc = 0. If ht is also chosen to be zero and aL
2

is a large number, we have C(p) = S(p) = 1/2 and C(q) = S(q) = 0. The

functions sin M and cos M are fast oscillating as LD varies. The value in

the curled bracket in (40) can be maximized by adjusting the drift distance

within a magnetic period. The maximum gain for both schemes becomes

w 2a a LiLk
G p wc wt cLD w 

4
T

2c2y 3  (41)

Note that the Length of the taper enters in the gain'experession through

a t " From (25), we find that the maximum small signal gain for a tapered

wiggler of length (Lc + L t ) is:

c tt22GT _ (v' -- 1) pawkw

max 2c2 y3  (42)

To simplify the comparison between (41) and (42), we assume that

a wc= a wt(0) = aw (0) and a wt(L t ) = a w(Lc + L t), i.e. both tapered wigglers

have the same percentage change in a or a L2 = X C(L + L ) 2. The gain-
w t t c t c t

enhancement factor is then obtained by taking the ratio of (41) and (42)

G w cLD W Lt (43)
2- 72 1+ t

G (2 - v2) (L + L c Lt

where 6 is the percentage change in a for both tapered wigglers. Forw

exampLe, if we have Lc = Lt and a = 1, the enhancement factor becomes

G " L D (44)

- 2.56 ()

max
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Thus, the enhancement could be orders of magnitude Large.

In order to simplify the analytical expression, we have calculated

the small-signal gain enhancement of a tapered wiggler by using dispersion

magnets, with LD >> Lc" Lt. However, if an enhancement of gain by about

ten times is sufficient for our purpose, we find that a two-component

device without drift space is good enough. For example, if the small-

signal gain of a 3-meter long tapered wiggler is to be enhanced, it can be

broken into a 1-meter constant section and a 2-meter tapered section with

the same percentage change in a . We keep a small gap between the twow
sections. The gap, which is about the distance of a magnetic period, works

as a phase adjustor such that the modulated electron beam that comes out of

the constant section can be placed at the optimum phase for the energy

extraction in the tapered section at large signals. The details of this

configuration are explained in the next section (IV).

111-5. MAXIMUM GAIN

The gain expression has been obtained in a double integration of real

functions

(45)
W2 W L L

= 3 W dzI  dz2aW (z)aw (z2)(z1 - z2) sin lf(z 1) - f(z2)A

where for the purpose of this discussion we have neglected the term (2 /y)

compared to (3/3y). From (45), an upper bound for the small-signal gain

can be set easily because the absolute value of a sine function cannot be

larger than one.

2 L L

G Glimit 4y 3 3 Ld I dz2 a wmax z1 - z21 (46)

2 a2  L3

p w w max

4Y3¢3 3
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where a is the maximum value of a (z). Comparing (46) to (18), it isw,max w
found that the upper limit for the small-signal gain can exceed the

maximum gain for a constant wiggler only by less than 25 percent if no

dispersion magnets are used. An interesting question is: within this

small margin is there any other wiggler variation which can give a higher

gain than the maximum gain of a constant wiggler with the same total

Length?

This question can be answered by using an approach similar to the

calculus of variation. For simplicity, we consider that a small perturbing

variation is introducted to the phase factor but not to the radiation

strength of the constant wiggler

f(z) = hz + 6n(z) ; a is constant (47)w

where 6 is a very small constant and n(z) is an arbitrary function. After

substituting (47) into (42), the gain can be expanded in power series of

6. If there is no other variation which can give a higher gain than the

maximum gain of the constant wiggler, the following condition must be

satisfied for any function n(z)

3G 0(48)
hL = 2.6; 6 = 0

Tis identity requires the following function to be zero

L L

dZn(Z,)o odz 2 (z, _ z2 ) cos[h (zI - z2 )]

0 0 (49)

Since n(z) is arbitrary, it can be chosen to be a set of orthogonal func-

tions in the interval [0, Li (For example, n(z) can be the Legendre

functions if the integration range is properly transformed into [-1, 1]).
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From the completeness of orthogonal functions, the following integral has

to vanish for any value of zI

L

o dz2(z - z2 ) cos [h (z1 - z = 0 (50)

It is straight forward to check that (50) can not be satisfied. Therefore,

the conclusion is that the constant wiggler gain is not the maximum gain

that can be obtained. By properly recontouring the wiggler variation, we

expect that the gain can be increased although the proof does not show a

best way to change the tapering. It is interesting to point out that the

linear taper given in (19) does satisfy the condition (48). However, if

the perturbing function n(z) is chosen to be cubic, the condition (45) is

not satisfied and we obtain a gain higher than (18). The increase in the

gain is obviously due to the generation of complex structures in the spon-

taneous spectrum. The change in its slope cannot be very big and thus the

increase in gain is very limited.

The analysis can be generalized to the perturbation on any given

wiggler variation. For example, consider a wiggler with the variation

f(z). Following a similar procedure, we can prove that the gain for that

wiggler is a maximum only when

dz2 (zI - z2 ) cos [f(zl) - f(z2)] = 0 (51)

for any value of z1. Again, it is straight forward to show that (48)

cannot be satisfied for any variation f(z). Therefore, a generalized

conclusion is that there is no wiggler variation which can be claimed to

give a maximum gain. The gain can always be increased, within the 25 per-

cent margin over the maximum constant-wiggler gain, by properly changing

the tapering.
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111-6. SUMMARY

We have completed a small-signal theory for an arbitrary FEL wiggler.

The spontaneous spectrum and the small-signal gain are derived analyti-

cally. Madey's theorem is then proved in a most general situation. The

gain experession is applied to special cases such as: constant wiggler,

linear tapered wiggler, two-component devices and optical klystron. An

upper limit is found for the small-signal gain of any wiggler configura-

tion which can exceed the maximum gain of a constant-wiggler of the same

length by less than 25 percent. The significance of its implication is

discussed. For an optical klystron with dispersion magnets, it is found

that the upper limit is determined from the equivalent device length

which is much higher than the value determined from its physical length.

The gain is thus possible to be highly enhanced with dispersion magnets

in the drift space.
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IV. GAIN AND EFFICIENCY ENHANCEMENT BY A MULTICOMPONENT

WIGGLER FREE ELECTRON LASER

IV-1. INTRODUCTION

Recently, there has been a large research effort towards the

development of the FEL as a high average power source of high frequency
1-5

electromagnetic radiation. It has been demonstrated theoretically that

the inherently low efficiency of a FEL at high input power and small output

wavelengths (X S 10.6 ), can be increased by appropriately tapering the

wiggler field. 3 ,4 In this form, an efficient FEL amplifier could be

obtained. A number of experiments are in progress to validate this

theory.
5 ,6

The efficiency of a FEL with a tapered wiggler, however, is enhanced

only at a given input power for which the taper is optimum; it can decrease
7

or even be 'negative' at other input powers. Further, the output radiation

frequency at which the gain is maximum as well as the gain spectrum width
8

changes as a function of input power for a given taper. Thus, a tapered

wiggler free electron laser (TWFEL) becomes less attractive as an

oscillator.

The unusual behavior of the TWFEL gain and gain spectrum as a function

of increasing power in the cavity results in difficult or impossible start

up from noise or with small input powers, low gain and efficiency at the

oscillator saturation power, and a delay, due to the possibility of mode

jumping, in reaching steady state. In this section we discuss how theseJ unwanted oscillator characteristics might be eliminated by substituting the
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tapered wiggler by a more complex multi-component wiggler configuration.

The multi-component wiggler (MCW) configuration is based on the physical

principles of both the TWFEL and the constant (untapered) wiggler free

electron laser (CWFEL). Thus, in order to understand the mechanism of the

MCWFEL we first summarize briefly the characteristics of both the TW and

the CWFEL.

In a TWFEL, the electrons are trapped in the ponderomotive potential

well ("bucket") associated with the beating wave formed by the wiggler and

the radiation field. A "resonant" or synchronous particle can be defined

that has the same longitudinal velocity Vz as the phase velocity Vph of the

ponderomotive wave p and with an initial phase relative to the beating wave

such that energy is extracted from the particle. By keeping the rate of

change of the phase velocity of the ponderomotive wave equal to that of the

initially resonant electron longitudinal velocity, the phase of the electron

relative to the ponderomotive wave remains constant and the extraction

process can be continued all the way down the wiggler. If the process is

sufficiently slow, (adiabatic) and the initial mean energy of the electron

beam coincides with the resonant energy, the electrons that were initially

trapped in the bucket, tend to remain trapped. 3 Hence, as the bucket

energy decreases, the mean energy of the trapped electrons is reduced. For

an electron beam with an effective energy spread smaller than the bucket

height, more than 40 percent of the electrons can be trapped in the poten-

tial well. The maximum increase in energy of the untrapped electrons is of

the order of the bucket height. Thus, by reducing the trapped electrons

mean energy by a larger value than the bucket height, the total mean energy

of the electron beam can be reduced. The extracted electron beam energy

provides the amplification of the input laser signal. The rate of change

of the difference Vz - Vph can be adjusted in a controlled manner by adia-

batically tapering the wiggler field amplitude and/or period.

In a CWFEL, the wiggler field amplitude and period are maintained

constant. Thus, an initially resonant electron can be maintained at

resonance throughout the constant wiggler only if its energy remains

constant (zero energy extraction). Depending on their initial phase the

electrons that are initially resonant can either extract energy from or

give energy to the electromagnetic wave. In order to extract energy from
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the electron beam in a CWFEL the initial mean energy must be Larger than

the resonant energy and the effective energy spread smaller than half the
9

bucket height. In this case, as the electron beam travels through the

interaction region, the electrons "bunch" in phase space at the right phase

for radiation amplification. Once the electron beam mean energy is reduced

to the resonant energy, a large fraction of electrons starts to gain energy

from the wave and the amplification process stops. A CWFEL can be thought

as a special case of the TWFEL for which the wiggler taper is zero.

From the previous description it can be concluded that different

tapers might require different initial electron mean energies for optimum

operation. Further, for a fixed taper, there is an optimum initial differ-

ence between the longitudinal mean velocity of the electron beam, Vb, in

the direction of propagation and the ponderomotive potential well phase

velocity, Vph, for radiation amplification at a given wavelength. For

example, for a CWFEL of a given interaction length L, the optimum electron

initial energy is such that a) is sufficiently close to the energy of the

potential well that the electrons orbit is perturbed by the presence of the

ponderomotive potential but b) sufficiently far that the electron energy is

reduced to the resonant energy and the maximum energy extracted from the

electron beam at a distance z = L from the origin. For a TWFEL, the maxi-

mum trapping occurs when the taper is such that the electron beam energy

rate of change remains the same as the ponderomotive potential energy rate

of change. In this case, the optimum initial electron beam energy is the

resonant energy. However if the bucket energy rate of change is, say,

faster than that of the electron beam, larger trapping might occur by start-

ing the electron beam at an energy below resonant. In both cases, (CWFEL and

and TWFEL), the optimum depends on the amplitude of the ponderomotive poten-

tial well that in turn depends on the radiation power in the interaction

region. As this power varies, the required initial electron beam energy

for maximum gain operation also varies. Since it is very difficult if not

impossible to vary the initial electron beam energy as the power in the

cavity builds up, what in fact occurs is a variation in the gain spectrum

and the frequency that corresponds to maximum gain. Thus, the output fre-

quency will vary and it might become very difficult to reach steady state

in a high power FEL oscillator.
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IV-2. PARAMETRIC DEPENDENCE OF GAIN SPECTRUM WITH INPUT POWER AND TAPER

In order to be able to design an appropriate high power FEL it is then

important to investigate and find ways to modify the parametric dependence

of the gain spectrum on the wiggler taper and radiation power as well as

the input electron beam energy. This dependence can he investigated through

the equations of motion for the electrons coupled to Maxwell's equations for

the fields. (3 ,4 ,9) In this subsection we discuss in more detail the physi-

cal mechanisms that determine the optimum electron beam initial energy for

a given taper. The interaction of an electron with the radiation inside the

wiggler can be described in a simplified manner by the one dimensional

equations of motion averaged over the fast oscillations of the electron

motion 3 ,4 as follows,

dz2  ks as a w sin !
dz

= k a a cos Y ]  (2)dz W 2Y 2  w

where P = 1 + a 2/2 for a sinusoidal wiggler field, t = f(k + k )dz - w t
w W s S

is the phase position of the electron in the ponderomotive potential well

and dp/dz is proportional to the difference between the longitudinal

particle velocity vz = dz/dt and the phase velocity of the ponderomotive

potential Vph = w s/(kw + k s).

In Equations (1) and (2), a and a are defined respectively as,s w

eE eA
a= E s  aw = (3)

mc k w mc

where Es - p1/2 is the radiation field amplitude, P is the radiation power,

A is the vector potential associated with the wiggler field B and k andw w w

ks = Ws/c are the wiggler and radiaton wavector respectively. Equations
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(1) and (2) can be combined to study the electrons orbit in phase space:

= = /dz)[yr / + k )] where Yr is the energy associated

with the ponderomotive potential well or resonant energy; to yield:

2 k da2  2a a k2

d W S W sin P (4)

d z 2  2 p.i d z

Equation (4) has been derived assuming no spatial dependence of the wiggler
wavelength (dk w/dz = 0) and sufficiently small gain that the spatial varia-

tion of the radiation wavelength and amplitude can be neglected relative to

the variation in the wiggler amplitude. In addition, terms of the order of

6y/y r and d/(dz k w) have been taken to be much smaller than 1 and neglected

to first order. The simple orbit equation (4) can be utilized to describe

the dominant mechanisms that determine the parametric behavior of a typical

TWFEL, a more general expression can be found elsewhere.
11

The previous qualitative description of the CWFEL and TWFEL behavior

can be more clearly understood in the light of Equations (1) through (4).

The first term in Equation (4) is due to the presence of a wiggler taper:

= law (z) - aw (o)]/aw(o), a similar term occurs for the case in which the

wiggler wavelength is tapered. For a zero taper FEL, A = o, Equation (4)

yields the well known pendulum equation that describes the behavior of the

electrons in a CWFEL.9"10 The trajectories of the electrons in this case

are periodic and correspond to either open orbits (untrapped) or closed

ones (trapped). The motion is symmetric and centered about 4 = tpr = 0.

The first section (lefthand) of Figure 1, marked 'constant' in the bottom

diagram, shows a schematic of the separation between open and closed orbits

for a small signal (a) and for a large signal (b) case. The maximum height

of the separatrix, that corresponds to the maximum 6yM for which a particle

mey be trapped, is proportional to (a a )1/2 (p 1/4 a 1/2 / k 1/2). The

frequency of oscillation Q of the particles in the well is also propor-

tional to 6yH . The maximum width of the trapped orbit is 27.

From the orbit equations (1) through (4) it is clear that electrons

injected at the resonant energy (Yinj = YRC in Figure 1) and uniformly dis-

tributed in phase space will have their energy oscillate about the resonant

value, if A = o. No net deceleration will occur in this case as as many
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electrons will gain and lose energy and the behavior of the electrons will

be symmetric about yR (dp/dz = o). In order to obtain maximum net deceler-

ation of the electrons when A = o, the electron beam must be injected above

the resonant energy. Equation (1) shows that electrons uniformly distrib-

uted in phase space, will increase and decrease in energy in a sinusoidal

manner about the initial Yinj" Because Yinj ' YR" the electrons with phase

near 7/2 will be closer to YR and therefore increase slower in phase than

those with other phases (Equation (2)). Hence, a bunching in phase near

r/2 where the deceleration is maximum will occur. In order to extract the

maximum energy, the electrons must be injected at an optimum injection energy

such that after bunching they only complete a fraction (approximately 1/2)

of the periodic oscillation during the length of the interaction. Because

the time it takes to execute this fraction of an oscillation (t = Q1 ) is

proportional to P , the optimum injection energy required for a fixed
S

length CW will increase with increasing radiation power.

Equation (2) shows that there is a direct correspondence between the

electron resonance energy such that dip/dz = o and the output frequency.

For a practical CWFEL device the electron beam injection energy remains

fixed and therefore the output frequency will shift in such a way to

"reaccommodate" the resonant energy until the difference Yinj - YR has the

optimum value for maximum gain. In addition, since the single pass effi-

ciency n of a CWFEL is determined by the amplitude of the Yihj - y dif-

ference which for operation at maximum gain will increase as PS 1/4, the
3/4actual gain of the system [AP /P Co()) rin/P S(o)] will decrease as P

Thus, although the output frequency will shift as a function of power, the

maximum gain for the initial small signal mode will be higher than for the

* other possible modes at higher power, and the initial mode might dominate

as the power in the cavity builds up. The disadvantage of course is that

the gain is too small at the large power of interest and the CWFEL has to

be operated at moderated to low powers.

For a very small input power and a finite taper (A * o), the first

term in Equation (4) will dominate. This case corresponds to a small

signal TWFEL and if we assume a linear wiggler taper the orbits correspond

to paraboles, p - (dp/dz) 2 . The effect of the second term in Equation (4)

is to introduce some periodicity in the motion in such a way that parabolic
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lines will be distorted as shown in the second section of Figure 1, marked

"tapered" in the bottom diagram for a frame moving with YR Further if the

second term is suffuciently large, closed regions (buckets) will exist where

the particle orbits are trapped (Figure lb). These buckets are now asym-

metric and centered at a phase ' = R that remains constant (di R/dz = o).

The value of R and size of the bucket depends on the relation between the

taper and radiation power as shown by Equation (4).

In a TWFEL, the system is prepared in such a way that the taper is

"optimum" for a given radiation power of sufficiently large value. That is,

the wiggler taper is made proportional to the change in yR in such a way

that there is a phase iR for which dR/dz = o all through the interaction

length. In addition, for maximum efficiency R has to be such that not

only the deceleration is large but the "bucket size" is sufficiently large

to trap the maximum number of electrons. Equation (1) shows that the

deceleration is maximum for maximum sin R" On the other hand, Equa-

tion (4) shows that the largest bucket area occurs when R = 0. The opti-

mum therefore occurs for R close to 400.12 Since the rate of change of
1/2

YR depends on Ps , it is clear that for a given taper there will be only

one radiation power that is optimum.

If the radiation power is larger than this optimum, the R that

R
corresponds to a rate of change in the energy such that d PR/dZ = 0, will be

smaller than the optimum. In this case, a slight increase can occur in the

number of trapped electrons (a maximum increase by a factor of 2 can occur

only if *R = 0 that corresponds to PS -) ) and the deceleration efficiency

remains the same to match the fixed taper. Thus, for a sufficiently large

increase in power from the optimum, the overall gain will decrease although

the overall efficiency will remain approximately the same. For the case

where the radiation power is smaller then the optimum, the corresponding R

will be larger than the optimum, up to a value of 90 , that corresponds to a

decrease in the radiation power from the optimum by a factor of less than

5. For smaller radiation powers, no *R can be defined, and the purely open

orbits begin to resemble the open paraboles of the small signal case.

Therefore, if P5 is much smaller than the optimum one (P op) for a given

taper, most of the particles remain untrapped. In order to understand how

the energy extraction can occur, a frame moving with yR that corresponds to
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optimum power can be defined. In the second section of Figure la, the

motion of the particles in this frame is shown at z = 0 and at z = z1
assuming that initially y = yR and Ps P sop/10. In this figure the

motion of Y in the laboratory frame is also shown. The particles move

clockwise and increase in energy relative to YR Due to the change of

slope of the orbits, the particles move faster when moving away from YR

than towards YR" Further, they move slower the closer their energy is to

YR* Energy extraction can occur if the average increase in energy relative

to YR occurs at a slower rate than the decrease in YR due to the wiggler

taper. This requires that Yinj be quite close to YR as well as a sufficiently

small interaction length so that most of the particles remain in the vicin-

ity of YR and do not reach the fast energy increasing region of the orbits.

Further, for a given interaction length, there will be an optimum initial

Yi for maximum gain, Figure la shows that y yR for P < P . For
opt i in) R s sop

Ps = P sop" the Yin is equal to yR to insure maximum electron trapping. In

addition, the maximum gain for Ps < sop" will always be smaler than the

maximum gain for Ps = P sop. Hence, if the initial Yini is chosen to maxi-

mize the gain for P s P sop' the initial (P << P ) output frequency ofmieth ai orP5 sp s sop

the oscillator will be quite different from that growing at saturation, where

Psat < P sop. The problem is exacerbated for very small output wavelengths

were even the maximum small signal can be below threshold for a practical

cavity loss. From the above discussion we conctude that for any taper A

there is an optimum power for maximum gain operation and this power

increases with A2. Thus, the CWFEL can again be considered as a special

case of a TWFEL with zero taper and optimum operation power in the small

signal regions. In addition, for any A the gain spectrum shifts and changes

its width as a function of increasing power with Larger shifts and widths

occurring for larger tapers where the small signal gain is made smaller

than the high (optimum) signal gain.

IV-3. MULTICOMPONENT WIGGLER SCHEME

An ideal FEL oscillator will saturate at high powers with sufficient

gain and efficiency to be of practical interest. At the same time, it will

have a high small signal gain, a monotonically decreasing gain curve (gain

vs. cavity power) and the peak of the gain spectrum will remain at the same

frequency. In this way only a minimum number of photon passes in the inter-
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action region will be required to obtain saturation and the system can be

started up from noise or very low powers. A MCWFEL operates as an ideal

FEL by utilizing the properties of a TWFEL with different tapers to its

advantage.

The basic idea is to find a system that uses a number of wiggler

components in such a way that each component operates at its own optimum

power and either is transparent at other powers or enhances the performance

of the corresponding component. In addition, the "optimum" output frequency

of all the components should be the same. This system can be found due to

the fact that, as discussed before, some of the most important physics

mechanisms determining the FEL characteristics depend on the initial elec-

tron beam parameters (yini/YR ) and the amount of taper that determines the

phase p at which bunching occurs. The resonant energy, YR' is in turn

determined by Xw and Bw for a fixed s . Thus, we can think of a system

formed by various wiggler components with different X and Bw to provideww
different yR for each component and separated by proper amounts of drift

space in such a way that the electron beam enters bunched at the right

phase in each section.

The simplest MCW combination is then a two component one consisting of

a constant wiggler (CW) followed or following a tapered wiggler (TW) as
CW TW

illustrated in Figure 1. In order to obtain yi > Y R but Yin = YR X

and B should be chosen in such a way that YR < Y R " If the constant

wiggler is located before the tapered wiggler, and is of the optimum length

for maximum small signal gain, that means that the electrons are bunched at

the end of the wiggler. For a CW, the bunching occurs at a phase near W/2.

The TW operates with the electrons bunched at a phase = 40r O 4 . Thus,

in order to introduce the electrons in the TW in a proper fashion a very

small drift space is required. In this drift space, the electrons should

move a distance d given by:

d = L(90° - 400) x .+ n (5)

where n is an integer number. By using a sufficiently Large n, d can be of

the order of a centimeter that is experimentally possible. On the other
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t
hand, if the CW is located after the TW, due to the very low small signal

gains of the TW, no large bunching occurs in the electrons before entering

the CW at Low input powers. However, the possibility exists that if the

gain is negative or even positive but very small, the energy spread of the

electrons could be increased by a small amount, decreasing the overall

small signal gain of the CW. None of these two wiggler arrangements

increases the high signal gain, however, they do not reduce it either since

the CW is practically transparent for high powers.

!If in addition we wish to enhance the Large signal gain, the system

should be operated in a fashion similar to an optical klystron. In the

optical klystron a wiggler is made of two elements or components of say,

length L1 separated by a length L. The first element acts as a "prebuncher"

and the second element as a "radiator". A system thus composed if the

Lengths are appropriately chosen will have larger high signal gain than one

I composed of a single element of length 2L1 . The reason for this behavior

is that in a single element wiggler, the electrons are modulated in the

initial part of the wiggler, and afterwards they spread as they bunch. The

bunching is never as effective as if after an initial velocity modulation

they drift in free space and are introduced into the second element only

after appropriate bunching has occurred. In this manner, the number of

trapped electrons can be increased for TW operation. The drift length

necessary to achieve bunching is calculated as the length that it takes

particles separated in energy by 6y/y and in space by half a radiation

wavelength to come together. This length is:

2
LD = Xs (n + 1/2) y /(6y/y) (6)

where n is is integer number of wavelengths. 6y can be identified with the

electron beam energy modulation in the prebuncher section in order to pre-

dict L. Further, the drift length L can be substituted by a dispersion

magnet of amplitude B which produces an "effective drift distance" propor-

tional to L3 7 (c.f. Section III) and therefore could permit to enhance

Ithe gain with shorter devices.
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IV-4. NUMERICAL RESULTS

In order to obtain quantitative confirmation of these ideas, they were

numerically investigated utilizing the TRW 1-D code (described in Sec-

tion II of this report) that includes diffraction effects of the input

Guassian optical beam and finite electron beam emittance according to the

formulation described in Section II of this report. The numerical results

presented here utiljze the optimum parameter of the present TRW experiment:

A = 10.6p, electron beam energy Eb = 25 MeV, electron beam peak current

I 40A, electron beam radius =2.25 mm = photon beam waist, total interac-

tion length < 4m, energy spread Ay/y = 0.5% and a w 0.98. Numerical ana-howver wre adefo a horerw 13

lysis, however, were made for a shorter wavelength case (X = l) and a

number of different characteristic parameters and the same basic results

were obtained.

Figure 2 shows the gain spectrum obtained for a simple L = 4 m

tapered wiggler FEL for different input powers. The large taper (A = 35%)

is required to obtain sufficientLy high gain (>%) at 500 MW. The gain is

below 5 percent for small signal powers (P < 1 MW) and extremely wide

(Aw/w > 4%), with the peak gain frequency shifted more than 2 percent from

the "resonant" output frequency. In order to test the MCW idea we first

simulated a 3 m two component wiggler as illustrated in Figure 3. Case 1)

corresponds to a I m CW followed by a 2 m TW separated by a 1 cm phase

adjustment section and the order of the components is inverted for case 2).

CW TW
The parameters are chosen in such a way that YR < R and inj= optimum
for the whole system. The exact parameters utilized in the simulation are

indicated in the figure. The taper utilized is A = 20 percent that corre-

sponds to an optimum power of = 500 MW for a length of 2 m and 100 MW for

a length of 3 m. The gain curve (gain vs. power) for the simple TWFEL is

shown in Figure 3 with dashed lines. The effect of the lm CW sectiorl in

case 1) is to increase the small signal gain over that of a simple 3m TWFEL

by a factor larger than 10, that corresponds to a gain similar to that of a

lm CW. At very high powers (P > 500 MW) the system behaves as a simple 3m

TW of A = 20 percent. The gain at 100 MW is enhanced by a factor of almost

2 and the optimum power now occurs at 50 MW. For case 2), the small signal

gain is also increased by almost a factor 10, however for very high powers

the system behaves as a simple 2m TWFEL. Another unusual behavior in this

case is the presence of a dip in the gain curve at P - 100 MW.
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The different behavior of the gain curve at high powers for cases 1)

and 2) is accounted by the "bunching" process. In a simple TW, the elec-

trons bunch and are trapped by the potential well during the first half of

an oscillation period, practically no radiation is emitted in this part of

the interaction. Thus, in case 1) the initial CW is acting as the buncher

section of a TW. Because the bunching in the CW is pr ably more effective

than in a TW, the whole system is equivalent to a TW of length > 3m for high

powers. Hence, the optimum power of this device is smaller than that of a

3m TW for the same taper A. For very high powers, the particles orbits show

that the bunching does not play such an important role and the whole system

behaves as a 3m TWFEL. For case 2), the CW is practically transparent to

high powers and all the gain is determined by the 2m TW. The dip in the

curve is due to the fact that this system essentially behaves like two

separate components and the optimum power of the 2m TW is at those high

powers for which the CW gain curve is already very small. Obviously,

several possibilities can be suggested to obtain a monotonically decreasing

gain curve with sufficient gain at high powers. For example, a system simi-

lar to 1) with either a shorter TW section or a very small tapered

(A 1 1% or so) first section that will decrease by a very small amount the

small signal gain but will increase the gain at the dip. Another possi-

bility is to consider the effect of drift sections in the high signal gain.

In order to test the optical klystron idea for a TWFEL, a three compo-

nent wiggler: CW, drift space, TW was simulated as shown in Figure 4. In

this figure the results obtained for a short prebuncher CW section

(LC = 15 cm) followed by a LD = Im drift section and by a 2m and a 3m sec-

tions are compared with those of simple 3m and 2m TWFEL's (dashed lines). The

lengths LC and LD were chosen to maximize the bunching at high power. Thus,

the effect of the prebuncher section is to increase the bunching at the

optimum power and increase the number of trapped electrons (and hence the

gain and efficiency), by a factor of almost 2. This enhancement will not

be effective if the electron beam has a large effective energy spread. In

this case the potential well will be full from the beginning and the par-

ticles bunched in phase space will spread in energy beyond the well.

As a final demonstration of the possibilities of a MCW system for FEL

[ oscillators, a four component system was simulated as illustrated in

7I
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Figure 5. EssentiaLLy, a prebuncher (CW plus drift section) was added to

the case 2, two component system of Figure 3. In addition, the taper was

decreased to 13 percent that corresponds to a shift in the optimum power of

a simple 2m TW from 500 MW to 100 MW. Essentially the same optimum power

than that of a simple 3m TW with A = .20. In this manner the small signal

gain is further enhanced by utilizing now the whole initial 3m as a pre-

buncher for the final Im CW secton. Note that the small signal gain is

60 percent compared to 20 percent in Figure 3 and less than 3 percent for

the simple 3m TW. The high signal gain now is also increased over that of

a 3m taper due to the prebuncher, however, this increase is quite small.

In addition, now the whole gain curve has an almost (except for the small

bump at a 100 MW) monotonically decreasing characteristic. Obviously, this

system can be optimized by varying the tapers of the different sections,

but the main principle here is to show that an enhancement in the gain up

to the saturation power is possible to achieve. The case shown in Figure 5

has a total single pass efficient n = 3 percent at P = 600 MW which is

assumed the saturation power for'a cavity loss of 5 percent.

More important than to show plain gain enhancement at a given output

frequency is to look at the improvement in the gain spectrum curve. Fig-

ure 6 shows the decrease in the spectrum width for small signals, the

increase of the maximum gain peak and the almost negligible shift in the

peak. This is due to the flexibility of choosing different yR for the

different sections of the MCW. Again, this result can be further optimized

to obtain an extremely stable output frequency and eliminate the possibility

of frequency chirp that is extremely deleterious for oscillator operation.

The number of photon passes calculated to obtain saturation at 600 MW

assuming an injected power of 1 MW was 90 for the case shown in Figure 5.

Further, the number of steps increases only in 10 by each order of magnitude

that we wish to decrease the injected power if diffraction effects of the

excited wave are neglected.

IV-4. SUMMARY

In conclusion, we have analyzed the main characteristics that determine

the gain and gain spectrum vs. power curves for different tapers. From

those characteristics we have developed a scheme that permits the operation

of the FEL as an oscillator, at very high powers. The scheme, MCWFEL,

aL
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increases the small signal gain by a factor larger than 10, provides a

smooth gain curve, and decreases and/or eliminates the possibility of

frequency chirp due to nonoptimum electron beam energy injection.
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V. FINITE PULSE AND PARASITIC INSTABILITIES

INVESTIGATIONS (UCLA)

V-1. FINITE ELECTRON BEAM PULSE INVESTIGATIONS

TWFEL oscillators and high gain amplifiers are not well described

by analyses that assume infinitely Long, periodic electron beams.

High peak current RF Linacs in general bunch the electron beam in 30-50

psec pulses. Therefore, the amplified radiation is also of the order

of 30-50 psec long. This finiteness of the electron and optical beam

pulse can modify the FEL characteristics predicted assuming infinite

beam pulses. For example: 1) the longitudinal profiles are in general

Gaussian. Since the radiation power for a FEL is proportional to the

square of electron beam density, the excited radiation pulse profile

will be similar to a Gaussian but narrower than that corresponding to the

electron. Hence, "bucket height" at the edge will be smaller than at the

center. If the tapers are optimized for the radiation amplified at the

center, the electrons that see the edge amplitude might be detrapped,

this problem will play an extremely important role for FEL oscillators;

2) the velocity of the optical pulse is larger than that of the electron

beam and "slippage" effects will occur; 3) space charge fields can

develop and become important at the edges of the electron beam pulse.

In this case, the edge electrons will experience a dc self electric

field that will modify their dynamics.

In this section we discuss our preliminary investigation of the

problems related to finite electron/optical beam pulse effects. In

particular, we investigate numericaly the case of a 10.6um amplifier of
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the characteristics of the TRW experiment and also a high gain 10.6um

amplifier in preparation to the study of these effects on oscillators.

High gain amplifiers can be obtained by either using a high density

electron beam (for example, one with a density 10 times Larger than the

present TRW experiment) or, low input powers and small tapers, (in this

case the extraction efficiency also becomes smaller) or the multicomponent

wiggler FEL (MCWFEL) described in the previous section.

V-1-1 Finite-Length Simulations

We consider a relativistic electron beam with pulse length L and

energy y0 passing through a linear magnetic wiggler with B = B wsinkw zy.

If Lb >> Ar (radiation wavelength) and both the amplitude (C ) and phase

(C) of the radiation vary slowly, the equations governing the spatial and

temporal evolution of the electromagnetic wave can be derived from Maxwell's

equation and take the following form

2

2k o i Y

2w 1 sin(k z + 4,
L- = w N (z i (2)

2=2k i YiE (Z

w

where = k- t + 0 and w is the plasma frequency of the relativisticz r p
beam. The equation of motion for each electron can be written as

d y2 q2= Bwx (3)
- = c-- k cos (qi + k z.)
dt mc1 

w

Equations (1) through (3) have a similar form to those given in Ref. 1.

In order to insure the numerical stability, Equations (1) and (2)

are integrated along the characteristic curve of the electromagnetic wave;

that is Ax = cat. The efficiency of a FEL decreases as the beam energy
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increases. In order to enhance the efficiency, the wiggler profile

should be designed in such a way that most electrons remain in resonance

with the wave all the time. The resonance condition is roughly

q 22 
rk = qB w (4)

r

As the electron energy changes according to Equation (3), the wiggler

field has to be varied accordingly so that Equation (4) remains true.

The following parameters characteristic of the 10.6vm variable

wiggler experiment at TRW are used in our simulations X = 3.5 cm,=.0x1 -3 w

r .6 x 10 cm, Lb (electron beam pulse length) = 0.9 cm,

L r(signal pulse length) = 39 cm, L (wiggler length) = 300 cm,

Y = 49.85, w = 1.69 x 1020 eB /mc = 5.2 x 1010, and eE /mc =

3.47 x 10 , where E is the signal electric field amplitude. The0

electron beam pulse is divided into 30 grid points. Each grid contains

30 radiation wavelengths. The time step At is taken so that Az = cAt = Xw
and the resonant phase Pr of the particle for determining the wiggler

profile is taken to be 40 . The simulation results of the spatial

distribution of electron density and radiation amplitude at two different

locations are shown in Figure (a) (z = 50X ) and Figure (ib)w

(z = 100X ). To display the electron distribution function, the electronW
pulse is divided into five spatially equal regions and three of them

are shown in Figure (2a) (z = 50A ) and Figure (2b) (z = 100A ).w w
Obviously the resonant condition can only be maintained for a given

position in the pulse, in this case we chose the particle located at

the center of the beam pulse. As the radiation amplitude is increased

along the length of the system, the inhomogeneity in the total

electromagnetic field along the beam pulse becomes more enhanced which

causes the ratio between the total trapped to untrapped electrons to

drop.

The gain and particle energy averaged over the beam pulse versus

distance are shown is Figure (3). Since the gain is moderate (=15%), the
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electron dynamics is dominated by the input laser. The edge effect

will not play an important role in this situation, however, for a high

gain or high electron density FEL, the bucket height at the edge and at

the center can be substantially different from each other. In this case,

the calculation using the periodic condition is not a good representation.

In order to investigate this effect, the beam density is increased

by a factor of 10. The results at z = 100 are shown in Figures (4)W

and (5). The peak radiation amplitude is increased by approximately 10

times but the averaged gain is enhanced by only a factor of 12 (instead of

100 as it would be predicted with the infinite electron beam code). This

is due to the fact that because of the strong inhomogeneities in this

case, none of the electrons at the edges can remain trapped. This effect

will occur also for the small signal gain part of an oscillator start up

and it will be exacerbated by the presence of multimodes except if a

MCWFEL is used (as shown in Section IV)

V-1-2 Space Charge Effects

The space charge effects from one-dimensi.onal calculations are

exaggerated because the electric field lines are forced to go to either

left or right. In a realistic situation the finite transverse dimension

of the electron beam allows the electric field Lines to go also sideways.

To investigate this effect, the electron beam is divided into a collection

of charged disks. The space charge electric field at z on the beam axis

due to all the other charged disks can be expressed as

Es.c (Zt) = 27r f p(z', t)dz'- 1 sgn(z-z')

-0Izzi b2.z + - -
Y

(5)
where b is the beam radius and

sgn(z-z') = -1 if (z-z') < 0

sgn(z-z') = I if (z-z') > o.
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JThe spatial distribution of the space charge electric field at the

end of the system is shown in Figure (6). Since the space charge force is

much less than the ponderomotive force produced by the input laser and

the wiggler field, the effects of the space charge on the output power

are negligible. This agrees with an analytical calculation of the effect

of space charge in the increase in energy spread. This calculation shows

that only if the electron beam pulse is allowed to drift between the

source and the interaction region for more than 50 m with I = 100A the

effect can become important.

These effects, however, might play a larger role in an oscillator

where small changes in the spectrum can be enhanced by the large number

of round trips. At this point it should be emphazised that the code

develooed to perform pulse simulations is more sophisticated than other

finite pulse codes previously available and can follow the evolution

of multimodes and density variations in a detailed manner. We think that

it will prove very useful to utilize this code to study the start up,

evolution and saturation of MCWFEL.

V-2 KINETIC THEORY OF THE SIDEBAND INSTABILITY IN FREE ELECTRON LASERS

In the oscillator mode of operation of a Free Electron Laser,

electrons trapped in the troughs of the ponderomotive potential wells can

interact coherently to produce the growth of sidebands at frequencies

separated from the signal waves by multiples of the bounce frequency in

the ponderomotive potential well. A kinetic treatment of this sideband

instabilities for low y Free Electron Lasers is given. It is expected

that the treatement can be generalized to high y Free Electron Lasers.

V.2-I Introduction

The stability of a large amplitude, monochromatic plasma wave in a

collisionless, one-dimensional plasma has been considered previously by

many authors2'3' 4 . Because of the coherent resonant interaction between

wave and electrons trapped in the troughs of the large amplitude wave,

it was found tf.at sidebands can grow exponentially.

The possibility of having these sideband instabilities in a Free

Electron Laser was pointed out by N. Kroll, et al. 5 and observed in the

computer simulation by A. Lin 6 (Section V.3 of this report). A kinetic

treatment of this problem in a Free Electron Laser is given in this

paper. The sideband instability was first investigated for electro-

89
GS 10

bI



static waves; the difference for the case of the Free Electron Laser is

that quasi-longitudinal ponderomotive potential wells are formed by the

combination of the wiggler magnetic field and the signal wave, and

therefore the small amplitude sideband waves that grow are transverse,

electromagnetic waves rather than electrostatic waves. Thus, instead

of solving a Vlasov equation coupled with Poisson's equation as in the

case of sidebands of electrostatic waves, we solve a Vlasov equation with

the coupling coming from Ampere's equation.

In Section V.2-2, the Mima-Nishikawa truncation scheme 4 will be used

to obtain a dispersion relation and in Section IV.2-3, the growth rates will

be obtained.

V.2-2 Basic Equations

The starting equations are a 1-dimensional relativistic equation

coupled with the Ampere's equation:

"(_-- + L + p*--) f (z, p, t) = 0az at ap

(3z L p) 7e f (z, , t) 

az2  c2  t 2  4re2  f(z, YP t) (6)

= w + As + AR in equation (6) is the sum of the vector potentials

for the wiggler field, signal wave and sideband which are assumed to be

ik

A -e a e w + c.c (7)

4$ -i(k z - w t)= e a e s s +c.c

R = e_ a R 
e- i ( R z - st + C.c

with constant amplitude a. Among the terms in Z2 , Z . Z gives a bunch-

ing potential term and w R gives coupling to the small amplitude, quasi-

longitudinal test wave whose stability is to be determined.
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The Linearized Vlasov equation is

af1 +v af eE° afl afo (8)
at az a e

where

EOE+ ei [ks + k ) z - t)1
ES ews - c.c

0

and

+ ea a (k + k)
E = 2 2

0 2micy

using Fourier-Laplace transforms of fo , fl , E in Equation (8) ana keeping

E(k) and E(k - 2k ), and f 1(k), f 1(k - k ) and f (k - 2k ) where k = k +0 0 0 0 S
k , we have

fl(k - ko ) + w 2 1 - f (k- k)

= Q-1 (A +E(k) + A-E (k - 2K 0)) (9)

where

= y[(w - w - (k - k 0 )v]

2 elEol ko
B my

=-yko -o

= B k0

I
I']i I I• I I I I I111
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A± ; e [i * af*i o
2 av ±1

eEo ±a 1 a-

-- 43 va v ±2
M v y[W - - (k - k0)v (w0 - k0V)]

eEo0+*a 1 a

m 2Y 4 v Y[W o- - ( k 0 oV ( ° - k aV)] f 0 ]
0

which can be solved in terms of the parabolic cylinder function as done by
7

Alsthul and Karpman. Using the soLution in Equation (6), we obtain the

desired dispersion reLation

I = A + (10
e~kk W) + (k -2k k w -2w) (10)

W-0 W. 0

where

(k, w) = w2 k2 c2  2.
Y

2 2 )2
W e (a) kkw B  a b

4m c n Q2 (2n+l) B2

W2 e2(a)2(k - 2kA)k w c dB = -P w 0 n n

4m c n 2 
- (2n+1)wB
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\dn; Jd& (2 -2n -1) C [- d)

+ I d fo -i mY W B

W T& 0 eE -f 0

and nip n) is the normalized parabolic cylinder.

1 V.2-3 Numerical Results

Having obtained the dispersion relation, we need the zero-th order

distribution function fP which gives a consistent equilibrium solution in

which there is a large amplitude electromagnetic wave. Instead of follow-

ing the recipe given by Bernstein, Greene and Kruskal,8 we will use a
6

distribution function inferred from the computer simulation.

I Using

fo = N-n[W - ,v-v 2 1 /2 6[(-p)2 + (x-Xn-vpt)2w]
j n 2  c X

c

where Nn is the number of tapered electrons in the n-th potential trough,

the dispersion reLation (10) is iumerically solved to obtain the curve

shown in Figure 7. An unstable region is localized in k-space and occurs

at frequencies w < w (lower sideband). Figure 8 shows the bounce frequency

Br as dependence of the maximum growth rate. The decrease of the growth

rate as wB decreases can be explained due to the disappearance of the

coherence of the electrons trapped at the bottom of the ponderomotive

potential well as the well becomes shallow.
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Nonlinear Saturations of Parasitic Instabilities in High-Efficiency
Free-Electron Lasers

A. T. Lin
Center for Plasma Physics and Fusion Engineerlng, University of Califoi n. Los Angeles, California 90024

(Received 31 October 1980)

A broad spectrum of unstable parasitic waves can arise from the interaction between
the trapped electrons and the radiation generated by a free-electron laser. Imposing a
dc electric field with appropriate strength at the onset of trapping can substantially nar-
row the unstable spectrum and allows considerable enhancement in tht radiation Intensity.
The nonlinear mechanisms which limit the enhancement process are observed to be due
to nonlinear frequency shift and detrapping.

PACS numbers: 42.55.-f, 52.25.Ps

The idea' of generating tunable, high-power dc electric field.
coherent radiations by passing a relativistic elec- To study the dynamics of this highly nonlinear
tron beam through a rippled magnetic field, due process, a lI-dimensional electromagnetic par-
to the recent advance in the accelerator technolo- ticle code with periodic boundary condition is
gy, finally becomes," a reality. The efficiency used. The parameters are the following: 1o=(1
of a free-electron laser is intrinsically limited _p2)-L/2=3, ck0 =1.52w,, P,1/P 0 = 10", and w,
because the growth of the ponderomotive force =qB,/moc=0.53w,, where 0= Vo/c, V.3 and c are,
produced by the interaction of the rippled magnet- respectively, the beam velocity and speed of light,
ic field and the signal wave will eventually trap ko is the wave number of the rippled field, P, is
the electrons. There are several schemes which the beam momentum spread, and B, is the rippled
theoretically could substantialy enhance the ef- field strength. This set of parameters corre-
ficiency of a free-electron laser. For instance, sponds to a relativistic electron beam and a den-
if the strength of the rippled magAetic field is in- sity of 1012 cm", an energy of 1.5 MeV, and a cur-
creased just before saturation,4 the depth of the rent of 5 kA/cm2. The period and the strength of
ponderomotive potential well becomes deeper the static magnetic field are, respectively, 2.2 cm
which allows the electrons to give up more energy and 1.2 kG. The growth rate and the efficiency of
to photons. Another scheme, suggested by sev- this case are 0.07w, and 8%, respectively. The
eral groups,5*6 is a variable wiggler, in "which the trapping of the electrons by the total longitudinal
strength and/or the period of the magnet is ta- potential wave causes the saturation to occur at
pered to maintain the electrons in resonance with wt - 150. This trapping process becomes evi-
photons throughout the length of the device, there- dent in Fig. 1(a) (dashed lines) which exhibits
by increasing energy extraction. Still another oscillatory behavior in the time evolution of the
alternative".8 is applying a dc electric field with signal waveick.=15.2w,). The oscillation fre-
proper strength at the time of saturation, thereby quency is at the particle bouncing frequency w.,
clamping the trapped electrons in the decelerating which is given by
phase which in turn transforms the dc energy into
high-frequency radiations. Most of the efficiency W kjq(,/mo70o)1,, (I

enhancement calculations use a single-m~de ap- where ck,= c(ko.k,)= 16.7w, and rpo is the total
proximation which prohibits the parasitic insta- longitudinal potential. At the onset of trapping,
bilityl ' 0 to occur. In this Letter, we will demon- a broad spectrum of parasitic waves with freque.
strate, by using particle simulation (multimodes), cies lower than that of the signal wave becomes
that the enhancement process is ultimately term- unstable. The dashed line in Fig. 1(b) (ck,= 13.7
inated by the generation of a parasitic instability X w,), Fig. l(c) (t*, = 12.2w,). and Fig. 1(d) (ck.
due to the interaction of the trapped electrons and f 10.7w,) shows the time evolution of the three
the enhanced signal wave. This parasitic insta- most unstable parasitic electromagnetic waves.
bility will play an important role in determining These waves grow with a very large growth rate
the maximum output power which can be Achieved (r,=0.2w,, r, =0.17w,, r. =0.1w,) which is sub-
from a free-electron laser. It will be shoWn later stantially larger than the original signal growth
that a considerable amount of improvement in rate. This instability has been investigated by
output power can still be achieved by carefully Kruer. Dawson, and Sudan' for large-amplitude
choosing the strength and the turn-on time of the electrostatic waves in plasmas and by Kroll.
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Morton, and Rosenbluth'0 for high-I 0 free-elec- The instability process can be viewed as a
tron lasers. In this paper the dispersion relation Raman scattering of the signal wave off the elec-
for the parasitic instability will be derived for trons executing bouncing motion in the pondero-
free-electron lasers following the approach of motive potential welL in the small amplitude ap-
Ref. 9, proximation, the equation describing a driven

harmonic oscillator can be used

.' + (uI.X- X.- Vl)f mc'ki k (2s)' -iW)k' , (2)" ,4.y (21f "

where (X.-Xo- VOt) is position of the electron relative to the nth trough, ks1 =ko.k', V,=w./(k,+k.)
is the phase velocity of the ponderomotive potential wave which provides the trapping and A, is the
perturbing vector potential. In writing Eq. (2) the space-charge field is neglected. The density per-

I turbation produced by the perturbed motion of the oscillators coupled with the transverse motion in-
duced by the rippled magnetic field produced a current perturbation which is the source of the parasit-
ic wave. By using some 6-function identities, one obtains

A,(,k w 1) w .k)n_(k,+km,)A,(k+nsk,, w+mw, (3)

1 where = wo- (..), k,=10 +k . and w Is the
- plasma frequency for the trapped electrons, y, 'which is smaller than the simulation results (r.

=(l - V,2 /C'/2, and =0.22w,). The discrepancy could be due to the

(, (4 nonlinear frequency shift caused by the difference
, ( 2 k 2-w.//).(4 between the restoring forces for trapped elec-

Retaining only the lowest-order cAupling in Eq. trons and for untrapped electrons. The instability
(3), i.e., m =0, we obtain the desired dispersion tends to level off after the unstable wave energy
relation reaches about 10 4 times the signal wave energy

-W 2 2 and eventually saturates because of particle dif -
i2 k (5) fusion and detrapping in the phase space (Fig. 2)

( ) c L y* which destroy the resonance betieen electrons
Substituting the appropriate parameters into Eq. and parasitic waves.
(5) gives r.=o.12w ,, r,=0. 1,, and r, =0.08w,,, When a dc electric field with amplitude Eo

es k,(,:E. where ipo is the saturated total longi-
tudinal potential (E.t300 V/cm) is applied at sat.

60- Wb uratiok , he combined action of dc and rf fields
causes some of the beam electrons to become

" 4 "I.I" runaways while others remain clamped at the de-

20 - celerating phase of the rf fields [Fig. 3(a)]. The
.Ii clamped electrons transfer nearly all the dc elec-

tric field energy that went into them to the elec-
tromagnetic radiation. The escaped beam elec-

I} W(d W trons are lost to the interaction. The gain in out-
I0 put power can in principle be extended indefinitelyF;-.

or, if the parasitic waves can be prevented from
1 0. 7 /. growing. The simulation results show that the un-

I 'stable parasitic wave spectrum is substantially

I narrowed upon imposing a de electric field at wi
zo 400 0 200 40 -150 (Fig. I solid line). This is due to the dis-

-- 0 b tortion of the potential well and phase shift caused

by the de electric field. In fact only the mode
9iO. 1. Time enution of he electromagnetic wave with k, a 12.2w remains unstable with a growth

mesegi for the cass without imposing a do eletrie with r2.2w, ansgnal wa gwt
field (dashed line) and with a do electric field (EQ rate of rs=O.O3w, and the signal wave energy is
!8,j) (a) sial wave, ) ch, 13.7, , (a) chl - 12.Z, increased to six times the saturation energy (E,,2)
ad (d), 1.-00., without applying the dc electric field. The en-
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(a)(a

of t-4 t Of

(b) I .
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FIG. 2. Time evolution of the phase space for the FIG. 3. Time evolution of the phase space for the
cae without imposing a dc electric field, (a) ojt - 145, ease with a de electric field of E0 - E,, (a) .apt = 210,
(b) wjt = 200, and (C) .-at a 300. (b) .at - 300, and (c) ,,t - 325.

hancement process is eventually terminated due any significant detrapping. (See Fig. 4.) The sat-
to the detrapping of resonant electrons by the uration is due to the frequency change [Eq. (1)] in-

ponderomotive wave with ck1 = (k+ k,)= 13.7w,, troduced by the increase of (p. This frequency

which is close to the original ponderomotive wave change also renders the mode with ck,= 10. 74, to
number a(ko+k,)=16.7w, [Fig. 3(c)]. At the become unstable at w.1=450 and eventually de-

same time the instability also generates a long- traps the resonant electrons. In this cape the
wavelength ponderomotive wave with wave num- signal wave energy was enhanced to 25 times

ber c(k,-k,)= a3p [Fig. 3(b)] which dols not E,,. However the increase rate in this case
cause any detrapping. I (only 25% of electrons are trapped) is lower thus

The results with Eo. aE,, indicate that the para- requiring a longer system. The overall efficiency

aitic waves are completely suppressed for a is small since the dc electric field spent a large

while upon imposing the dc electric field and the amount of its energy to accelerate the runaway
mode with ck,a 12.2a,, begins to grow at w,t electrons. The efficiency enhancement factor can

a 200 but this mode was saturated without causing be substantially increased if the runaway elec-
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(a) propriate strength of a dc electric field at satur-
ation. The enhancement process is ultimately

20 terminated by the detrapping of resonant electrons
caused by the parasitic instability.
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VIII NEW DISCOVERIES

ALthough no invention or patent disclosure was applied for, the

multicomponent wiggler scheme described in Section IV is a new discovery

stemming from this research effort.
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